geemap学习笔记023:利用点矢量文件从Earth Engine图像中提取像素值

前言

遥感数据中通常需要根据点矢量文件来提取点对应位置的像素值,包括DEM、波段值等。

1 导入库并显示地图

python 复制代码
import ee
import geemap
import os

ee.Initialize()
Map = geemap.Map()
Map

2 添加并显示数据

python 复制代码
# 添加Earth Engine数据集
dem = ee.Image('USGS/SRTMGL1_003')
landsat7 = ee.Image('LANDSAT/LE7_TOA_5YEAR/1999_2003')

# 设置可视化参数
vis_params = {
    'min': 0,
    'max': 4000,
    'palette': ['006633', 'E5FFCC', '662A00', 'D8D8D8', 'F5F5F5'],
}

# 在Map上添加Earth Engine图层
Map.addLayer(
    landsat7, {'bands': ['B4', 'B3', 'B2'], 'min': 20, 'max': 200}, 'Landsat 7'
)
Map.addLayer(dem, vis_params, 'SRTM DEM', True, 1)

3 下载数据

python 复制代码
work_dir = os.path.expanduser('~/Downloads') #下载示例数据
in_shp = os.path.join(work_dir, 'us_cities.shp')
if not os.path.exists(in_shp):
    data_url = 'https://github.com/giswqs/data/raw/main/us/us_cities.zip'
    geemap.download_from_url(data_url, out_dir=work_dir)

in_fc = geemap.shp_to_ee(in_shp) #将下载的shp文件转为Earth Engine格式
Map.addLayer(in_fc, {}, 'Cities')

4 导出像素值为shp或者csv格式

python 复制代码
out_shp = os.path.join(work_dir, 'dem.shp') #导出为shp
geemap.extract_values_to_points(in_fc, dem, out_shp)

out_csv = os.path.join(work_dir, 'landsat.csv') #导出为csv
geemap.extract_values_to_points(in_fc, landsat7, out_csv)

结果展示

后记

大家如果有问题需要交流或者有项目需要合作,可以加Q Q :504156006详聊,加好友请留言"CSDN",谢谢。

相关推荐
~无忧花开~1 小时前
JavaScript学习笔记(二十八):JavaScript性能优化全攻略
开发语言·前端·javascript·笔记·学习·性能优化·js
机器学习之心1 小时前
PINN物理信息神经网络风电功率预测!引入物理先验知识嵌入学习的风电功率预测新范式!Matlab实现
神经网络·学习·matlab·风电功率预测·物理信息神经网络
HalvmånEver2 小时前
红黑树实现与原理剖析(上篇):核心规则与插入平衡逻辑
数据结构·c++·学习·算法·红黑树
BreezeJuvenile2 小时前
外设模块学习(5)——DS18B20温度传感器(STM32)
stm32·嵌入式硬件·学习·温度传感器·ds18b20
cimeo2 小时前
【C学习】13-数组使用与运算
学习·c#
一只小风华~3 小时前
学习笔记:Vue Router 中的链接匹配机制与样式控制
前端·javascript·vue.js·笔记·学习·ecmascript
月临水4 小时前
Redis 学习笔记(二)
redis·笔记·学习
摇滚侠4 小时前
Spring Boot 3零基础教程,条件注解,笔记09
java·spring boot·笔记
Nan_Shu_6145 小时前
学习SpringBoot
java·spring boot·后端·学习·spring
●VON5 小时前
重生之我在大学自学鸿蒙开发第二天-《MVVM模式》
学习·华为·harmonyos