geemap学习笔记023:利用点矢量文件从Earth Engine图像中提取像素值

前言

遥感数据中通常需要根据点矢量文件来提取点对应位置的像素值,包括DEM、波段值等。

1 导入库并显示地图

python 复制代码
import ee
import geemap
import os

ee.Initialize()
Map = geemap.Map()
Map

2 添加并显示数据

python 复制代码
# 添加Earth Engine数据集
dem = ee.Image('USGS/SRTMGL1_003')
landsat7 = ee.Image('LANDSAT/LE7_TOA_5YEAR/1999_2003')

# 设置可视化参数
vis_params = {
    'min': 0,
    'max': 4000,
    'palette': ['006633', 'E5FFCC', '662A00', 'D8D8D8', 'F5F5F5'],
}

# 在Map上添加Earth Engine图层
Map.addLayer(
    landsat7, {'bands': ['B4', 'B3', 'B2'], 'min': 20, 'max': 200}, 'Landsat 7'
)
Map.addLayer(dem, vis_params, 'SRTM DEM', True, 1)

3 下载数据

python 复制代码
work_dir = os.path.expanduser('~/Downloads') #下载示例数据
in_shp = os.path.join(work_dir, 'us_cities.shp')
if not os.path.exists(in_shp):
    data_url = 'https://github.com/giswqs/data/raw/main/us/us_cities.zip'
    geemap.download_from_url(data_url, out_dir=work_dir)

in_fc = geemap.shp_to_ee(in_shp) #将下载的shp文件转为Earth Engine格式
Map.addLayer(in_fc, {}, 'Cities')

4 导出像素值为shp或者csv格式

python 复制代码
out_shp = os.path.join(work_dir, 'dem.shp') #导出为shp
geemap.extract_values_to_points(in_fc, dem, out_shp)

out_csv = os.path.join(work_dir, 'landsat.csv') #导出为csv
geemap.extract_values_to_points(in_fc, landsat7, out_csv)

结果展示

后记

大家如果有问题需要交流或者有项目需要合作,可以加Q Q :504156006详聊,加好友请留言"CSDN",谢谢。

相关推荐
天天爱吃肉82181 小时前
第十篇:电源设计的“能量矩阵”——无线充电与碳化硅LLC谐振
笔记·矩阵·汽车
Luis Li 的猫猫2 小时前
深度学习中的知识蒸馏
人工智能·经验分享·深度学习·学习·算法
鹿鸣悠悠4 小时前
第二月:学习 NumPy、Pandas 和 Matplotlib 是数据分析和科学计算的基础
学习·numpy·pandas
Java能学吗5 小时前
2.17学习总结
数据结构·学习
靡不有初1116 小时前
CCF-CSP第31次认证第二题——坐标变换(其二)【NA!前缀和思想的细节,输出为0的常见原因】
c++·学习·ccfcsp
我爱学习_zwj9 小时前
4.从零开始学会Vue--{{组件通信}}
前端·javascript·vue.js·笔记·前端框架
虾球xz9 小时前
游戏引擎学习第108天
学习·游戏引擎
好评笔记9 小时前
深度学习笔记——循环神经网络之LSTM
笔记·rnn·深度学习
初尘屿风10 小时前
小程序类毕业设计选题题目推荐 (29)
spring boot·后端·学习·微信·小程序·课程设计
Dawndddddd10 小时前
网络安全之攻防笔记--通用漏洞SQL注入之MySQL&mssql&postgresql
笔记·sql·web安全