电感耦合等离子刻蚀

引言

众所周知,化合物半导体中不同的原子比对材料的蚀刻特性有很大的影响。为了对蚀刻速率和表面形态的精确控制,通过使用低至25nm的薄器件阻挡层的,从而增加了制造的复杂性。本研究对比了三氯化硼与氯气的偏置功率,以及气体比对等离子体腐蚀高铝含量AlGaN与AlN在蚀刻速率、选择性和表面形貌方面的影响。

蚀刻速率受偏置功率和气体化学性质的影响很大。英思特详细说明了AlGaN的Al组成的微小变化的影响,并显示了与AlN相比,相对于偏置功率的蚀刻速率的显著变化。

实验与讨论

本研究采用金属有机化学气相沉积(MOCVD)培养了三种不同的样品,包括Al0.71Ga0.29N、Al0.85Ga0.15N和AlN。所有三个样品都在1.3mm厚的蓝宝石基板上的AlN缓冲层上生长。为了评估偏置功率对蚀刻速率和表面形貌的影响,在腔室压力(3mTorr)、ICP功率(125W)和气体流量(20%三氯化硼+5sccmAr)的条件下,将偏置功率从10W扫到100W。

图1显示了所有三种成分的蚀刻速率。我们观察到随着蚀刻率的线性增加,Al0.71Ga0.29N组成的调查偏差功率为100W。然而,Al0.85Ga0.15N和AlN蚀刻率呈现非线性趋势,即使在较低偏置功率下,都显示接近饱和蚀刻率100W偏置功率。

图1:偏置功率对蚀刻率的影响

如图2所示,与Al0.85Ga0.15N和AlN相比,Al0.71Ga0.29N对偏压功率表面粗糙度的响应显示出不同的趋势,其类似于图1中显示出的不同趋势的蚀刻速率。与Al0.71Ga0.29N相比,Al0.85Ga0.15N和AlN在10W至20W范围内表现出更大的表面粗糙度,在更低的偏置功率下过渡到更光滑的表面。

随着Al含量的降低,这种蚀刻机制的平衡得到改善,并且与较高的含Al成分相比,在低偏压下会导致较低的表面粗糙度。总的来说,对于后处理制造来说,30W以上的所有三种组合物的亚纳米表面粗糙度都是可接受的。

结论

英思特实验发现,当保持压力、ICP功率和总气体流量不变时,Al0.71Ga0.29N的蚀刻速率在高达100 W的偏压功率下呈现线性趋势,而Al0.85Ga0.15N和AlN都呈现接近饱和的非线性蚀刻速率。其结果表明,即使Al的含量发生微小变化,也会导致显著的蚀刻速率和表面形态趋势。

同样,所研究的较低Al含量,Al0.71Ga0.29N,随着BCl3与Cl2比率的变化,显示出对表面形态的不同响应。此外,对于高Cl2含量的等离子体蚀刻,其表面氧化导致蚀刻速率的显著降低以及表面粗糙度的增加。

相关推荐
GocNeverGiveUp8 分钟前
机器学习2-NumPy
人工智能·机器学习·numpy
B站计算机毕业设计超人1 小时前
计算机毕业设计PySpark+Hadoop中国城市交通分析与预测 Python交通预测 Python交通可视化 客流量预测 交通大数据 机器学习 深度学习
大数据·人工智能·爬虫·python·机器学习·课程设计·数据可视化
学术头条1 小时前
清华、智谱团队:探索 RLHF 的 scaling laws
人工智能·深度学习·算法·机器学习·语言模型·计算语言学
18号房客1 小时前
一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的分类
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·sklearn
feifeikon1 小时前
机器学习DAY3 : 线性回归与最小二乘法与sklearn实现 (线性回归完)
人工智能·机器学习·线性回归
游客5201 小时前
opencv中的常用的100个API
图像处理·人工智能·python·opencv·计算机视觉
古希腊掌管学习的神1 小时前
[机器学习]sklearn入门指南(2)
人工智能·机器学习·sklearn
凡人的AI工具箱2 小时前
每天40分玩转Django:Django国际化
数据库·人工智能·后端·python·django·sqlite
咸鱼桨2 小时前
《庐山派从入门到...》PWM板载蜂鸣器
人工智能·windows·python·k230·庐山派
强哥之神2 小时前
Nexa AI发布OmniAudio-2.6B:一款快速的音频语言模型,专为边缘部署设计
人工智能·深度学习·机器学习·语言模型·自然语言处理·音视频·openai