【生物信息学】scRNA-seq数据分析(一):质控~细胞筛选~高表达基因筛选

文章目录

  • 一、实验介绍
  • 二、实验环境
    • [1. 配置虚拟环境](#1. 配置虚拟环境)
    • [2. 库版本介绍](#2. 库版本介绍)
  • 三、实验内容
    • [0. 导入必要的库](#0. 导入必要的库)
    • [1. 质控](#1. 质控)
    • [2. 细胞筛选](#2. 细胞筛选)
    • [3. 高表达基因筛选](#3. 高表达基因筛选)

一、实验介绍

质控~ 细胞筛选 ~高表达基因筛选

二、实验环境

1. 配置虚拟环境

可使用如下指令:

bash 复制代码
conda create -n bio python==3.9
bash 复制代码
conda activate bio
bash 复制代码
pip install -r requirements.txt

其中,requirements.txt:

bash 复制代码
numpy==1.21.5
pandas==1.4.4
scanpy==1.9.6

2. 库版本介绍

软件包 本实验版本
numpy 1.21.5
pandas 1.4.4
python 3.8.16
scanpy 1.9.6
scipy 1.10.1
seaborn 0.12.2

三、实验内容

0. 导入必要的库

python 复制代码
import numpy as np
import pandas as pd
import scanpy as sc
  • Scanpy是一个用于单细胞RNA测序数据分析的Python库,提供了许多功能和工具来处理和分析单细胞数据

1. 质控

python 复制代码
# 设置Scanpy参数
sc.settings.verbosity = 3
sc.logging.print_header()
sc.settings.set_figure_params(dpi=80, facecolor='white')

# 定义结果文件路径
results_file = 'write/pbmc3k.h5ad'

# 读取单细胞数据
adata = sc.read_10x_mtx(
    'data/filtered_gene_bc_matrices/hg19/',  # 数据目录
    var_names='gene_symbols',                # 使用基因符号作为变量名
    cache=True)                              # 写入缓存文件以便后续更快读取

# 确保基因名唯一
adata.var_names_make_unique()

# 绘制展示高度表达的基因
sc.pl.highest_expr_genes(adata, n_top=20)

2. 细胞筛选

python 复制代码
# 过滤细胞和基因
sc.pp.filter_cells(adata, min_genes=200)
sc.pp.filter_genes(adata, min_cells=3)

# 标记线粒体基因
adata.var['mt'] = adata.var_names.str.startswith('MT-')

# 计算质量控制指标
sc.pp.calculate_qc_metrics(adata, qc_vars=['mt'], percent_top=None, log1p=False, inplace=True)

# 绘制质量控制指标的小提琴图和散点图
sc.pl.violin(adata, ['n_genes_by_counts', 'total_counts', 'pct_counts_mt'], jitter=0.4, multi_panel=True)
sc.pl.scatter(adata, x='total_counts', y='pct_counts_mt')
sc.pl.scatter(adata, x='total_counts', y='n_genes_by_counts')



3. 高表达基因筛选

python 复制代码
# 进一步的过滤和归一化
adata = adata[adata.obs.n_genes_by_counts < 2500, :]
adata = adata[adata.obs.pct_counts_mt < 5, :]

# 总计数归一化
sc.pp.normalize_total(adata, target_sum=1e4)

# 对数变换
sc.pp.log1p(adata)

# 特征选择:识别高度变异的基因
sc.pp.highly_variable_genes(adata, min_mean=0.0125, max_mean=3, min_disp=0.5)

# 绘制高度变异基因的图
sc.pl.highly_variable_genes(adata)

# 设置.raw属性
adata.raw = adata

# 实际过滤数据
adata = adata[:, adata.var.highly_variable]

# 数据回归处理和标准化
sc.pp.regress_out(adata, ['total_counts', 'pct_counts_mt'])
sc.pp.scale(adata, max_value=10)
相关推荐
万事可爱^6 小时前
HDBSCAN:密度自适应的层次聚类算法解析与实践
算法·机器学习·数据挖掘·聚类·hdbscan
白水先森11 小时前
如何使用ArcGIS Pro高效查找小区最近的地铁站
经验分享·arcgis·信息可视化·数据分析
yuanbenshidiaos15 小时前
【数据挖掘】数据仓库
数据仓库·笔记·数据挖掘
lcw_lance17 小时前
人工智能(AI)的不同维度分类
人工智能·分类·数据挖掘
伊一大数据&人工智能学习日志18 小时前
自然语言处理NLP 04案例——苏宁易购优质评论与差评分析
人工智能·python·机器学习·自然语言处理·数据挖掘
huaqianzkh20 小时前
理解构件的3种分类方法
人工智能·分类·数据挖掘
白水先森1 天前
ArcGIS Pro制作人口三维地图教程
arcgis·信息可视化·数据分析
是一只努力的小菜鸡啦1 天前
数据分析和数据挖掘的工作内容
信息可视化·数据挖掘·数据分析
Sharewinfo_BJ2 天前
智信BI:解决Power BI全面兼容问题的新选择
数据分析·数据可视化·powerbi
Sodas(填坑中....)2 天前
SVM对偶问题
人工智能·机器学习·支持向量机·数据挖掘