【生物信息学】scRNA-seq数据分析(一):质控~细胞筛选~高表达基因筛选

文章目录

  • 一、实验介绍
  • 二、实验环境
    • [1. 配置虚拟环境](#1. 配置虚拟环境)
    • [2. 库版本介绍](#2. 库版本介绍)
  • 三、实验内容
    • [0. 导入必要的库](#0. 导入必要的库)
    • [1. 质控](#1. 质控)
    • [2. 细胞筛选](#2. 细胞筛选)
    • [3. 高表达基因筛选](#3. 高表达基因筛选)

一、实验介绍

质控~ 细胞筛选 ~高表达基因筛选

二、实验环境

1. 配置虚拟环境

可使用如下指令:

bash 复制代码
conda create -n bio python==3.9
bash 复制代码
conda activate bio
bash 复制代码
pip install -r requirements.txt

其中,requirements.txt:

bash 复制代码
numpy==1.21.5
pandas==1.4.4
scanpy==1.9.6

2. 库版本介绍

软件包 本实验版本
numpy 1.21.5
pandas 1.4.4
python 3.8.16
scanpy 1.9.6
scipy 1.10.1
seaborn 0.12.2

三、实验内容

0. 导入必要的库

python 复制代码
import numpy as np
import pandas as pd
import scanpy as sc
  • Scanpy是一个用于单细胞RNA测序数据分析的Python库,提供了许多功能和工具来处理和分析单细胞数据

1. 质控

python 复制代码
# 设置Scanpy参数
sc.settings.verbosity = 3
sc.logging.print_header()
sc.settings.set_figure_params(dpi=80, facecolor='white')

# 定义结果文件路径
results_file = 'write/pbmc3k.h5ad'

# 读取单细胞数据
adata = sc.read_10x_mtx(
    'data/filtered_gene_bc_matrices/hg19/',  # 数据目录
    var_names='gene_symbols',                # 使用基因符号作为变量名
    cache=True)                              # 写入缓存文件以便后续更快读取

# 确保基因名唯一
adata.var_names_make_unique()

# 绘制展示高度表达的基因
sc.pl.highest_expr_genes(adata, n_top=20)

2. 细胞筛选

python 复制代码
# 过滤细胞和基因
sc.pp.filter_cells(adata, min_genes=200)
sc.pp.filter_genes(adata, min_cells=3)

# 标记线粒体基因
adata.var['mt'] = adata.var_names.str.startswith('MT-')

# 计算质量控制指标
sc.pp.calculate_qc_metrics(adata, qc_vars=['mt'], percent_top=None, log1p=False, inplace=True)

# 绘制质量控制指标的小提琴图和散点图
sc.pl.violin(adata, ['n_genes_by_counts', 'total_counts', 'pct_counts_mt'], jitter=0.4, multi_panel=True)
sc.pl.scatter(adata, x='total_counts', y='pct_counts_mt')
sc.pl.scatter(adata, x='total_counts', y='n_genes_by_counts')



3. 高表达基因筛选

python 复制代码
# 进一步的过滤和归一化
adata = adata[adata.obs.n_genes_by_counts < 2500, :]
adata = adata[adata.obs.pct_counts_mt < 5, :]

# 总计数归一化
sc.pp.normalize_total(adata, target_sum=1e4)

# 对数变换
sc.pp.log1p(adata)

# 特征选择:识别高度变异的基因
sc.pp.highly_variable_genes(adata, min_mean=0.0125, max_mean=3, min_disp=0.5)

# 绘制高度变异基因的图
sc.pl.highly_variable_genes(adata)

# 设置.raw属性
adata.raw = adata

# 实际过滤数据
adata = adata[:, adata.var.highly_variable]

# 数据回归处理和标准化
sc.pp.regress_out(adata, ['total_counts', 'pct_counts_mt'])
sc.pp.scale(adata, max_value=10)
相关推荐
葡萄城技术团队1 小时前
零基础上手数据分析工具:从入门到实操全指南
数据分析
doll ~CJ1 小时前
数据仓库与数据挖掘基础知识
数据仓库·数据挖掘
研梦非凡3 小时前
ShapeLLM: 用于具身交互的全面3D物体理解
人工智能·深度学习·计算机视觉·3d·架构·数据分析
葡萄城技术团队3 小时前
Wyn 商业智能软件:3D 可视化大屏工具的信创级智能解决方案
数据分析
nju_spy5 小时前
复杂结构数据挖掘(二)关联规则挖掘 Association rule mining
人工智能·数据挖掘·关联规则挖掘·apiriori·dhp·fp-growth·高频集
MoRanzhi120318 小时前
15. Pandas 综合实战案例(零售数据分析)
数据结构·python·数据挖掘·数据分析·pandas·matplotlib·零售
qq_4369621818 小时前
数据民主化实践:ChatBI赋能全民数据分析
数据挖掘·数据分析
geneculture19 小时前
融智学院十大学部知识架构示范样板
人工智能·数据挖掘·信息科学·哲学与科学统一性·信息融智学
Michelle80231 天前
23大数据 数据挖掘复习1
大数据·人工智能·数据挖掘
补三补四1 天前
GB级csv文件处理
数据分析