【生物信息学】scRNA-seq数据分析(一):质控~细胞筛选~高表达基因筛选

文章目录

  • 一、实验介绍
  • 二、实验环境
    • [1. 配置虚拟环境](#1. 配置虚拟环境)
    • [2. 库版本介绍](#2. 库版本介绍)
  • 三、实验内容
    • [0. 导入必要的库](#0. 导入必要的库)
    • [1. 质控](#1. 质控)
    • [2. 细胞筛选](#2. 细胞筛选)
    • [3. 高表达基因筛选](#3. 高表达基因筛选)

一、实验介绍

质控~ 细胞筛选 ~高表达基因筛选

二、实验环境

1. 配置虚拟环境

可使用如下指令:

bash 复制代码
conda create -n bio python==3.9
bash 复制代码
conda activate bio
bash 复制代码
pip install -r requirements.txt

其中,requirements.txt:

bash 复制代码
numpy==1.21.5
pandas==1.4.4
scanpy==1.9.6

2. 库版本介绍

软件包 本实验版本
numpy 1.21.5
pandas 1.4.4
python 3.8.16
scanpy 1.9.6
scipy 1.10.1
seaborn 0.12.2

三、实验内容

0. 导入必要的库

python 复制代码
import numpy as np
import pandas as pd
import scanpy as sc
  • Scanpy是一个用于单细胞RNA测序数据分析的Python库,提供了许多功能和工具来处理和分析单细胞数据

1. 质控

python 复制代码
# 设置Scanpy参数
sc.settings.verbosity = 3
sc.logging.print_header()
sc.settings.set_figure_params(dpi=80, facecolor='white')

# 定义结果文件路径
results_file = 'write/pbmc3k.h5ad'

# 读取单细胞数据
adata = sc.read_10x_mtx(
    'data/filtered_gene_bc_matrices/hg19/',  # 数据目录
    var_names='gene_symbols',                # 使用基因符号作为变量名
    cache=True)                              # 写入缓存文件以便后续更快读取

# 确保基因名唯一
adata.var_names_make_unique()

# 绘制展示高度表达的基因
sc.pl.highest_expr_genes(adata, n_top=20)

2. 细胞筛选

python 复制代码
# 过滤细胞和基因
sc.pp.filter_cells(adata, min_genes=200)
sc.pp.filter_genes(adata, min_cells=3)

# 标记线粒体基因
adata.var['mt'] = adata.var_names.str.startswith('MT-')

# 计算质量控制指标
sc.pp.calculate_qc_metrics(adata, qc_vars=['mt'], percent_top=None, log1p=False, inplace=True)

# 绘制质量控制指标的小提琴图和散点图
sc.pl.violin(adata, ['n_genes_by_counts', 'total_counts', 'pct_counts_mt'], jitter=0.4, multi_panel=True)
sc.pl.scatter(adata, x='total_counts', y='pct_counts_mt')
sc.pl.scatter(adata, x='total_counts', y='n_genes_by_counts')



3. 高表达基因筛选

python 复制代码
# 进一步的过滤和归一化
adata = adata[adata.obs.n_genes_by_counts < 2500, :]
adata = adata[adata.obs.pct_counts_mt < 5, :]

# 总计数归一化
sc.pp.normalize_total(adata, target_sum=1e4)

# 对数变换
sc.pp.log1p(adata)

# 特征选择:识别高度变异的基因
sc.pp.highly_variable_genes(adata, min_mean=0.0125, max_mean=3, min_disp=0.5)

# 绘制高度变异基因的图
sc.pl.highly_variable_genes(adata)

# 设置.raw属性
adata.raw = adata

# 实际过滤数据
adata = adata[:, adata.var.highly_variable]

# 数据回归处理和标准化
sc.pp.regress_out(adata, ['total_counts', 'pct_counts_mt'])
sc.pp.scale(adata, max_value=10)
相关推荐
SelectDB技术团队11 分钟前
兼顾高性能与低成本,浅析 Apache Doris 异步物化视图原理及典型场景
大数据·数据库·数据仓库·数据分析·doris
panpantt3211 小时前
【参会邀请】第二届大数据与数据挖掘国际会议(BDDM 2024)邀您相聚江城!
大数据·人工智能·数据挖掘
statistican_ABin2 小时前
R语言数据分析案例45-全国汽车销售数据分析(可视化与回归分析)
数据挖掘·数据分析
CV学术叫叫兽3 小时前
快速图像识别:落叶植物叶片分类
人工智能·分类·数据挖掘
网络真危险!!3 小时前
【数据分析】认清、明确
数据挖掘·数据分析
菜鸟的人工智能之路3 小时前
极坐标气泡图:医学数据分析的可视化新视角
python·数据分析·健康医疗
菜鸟学Python3 小时前
Python 数据分析核心库大全!
开发语言·python·数据挖掘·数据分析
EterNity_TiMe_4 小时前
【论文复现】(CLIP)文本也能和图像配对
python·学习·算法·性能优化·数据分析·clip
CV学术叫叫兽5 小时前
一站式学习:害虫识别与分类图像分割
学习·分类·数据挖掘
HPC_fac1305206781610 小时前
以科学计算为切入点:剖析英伟达服务器过热难题
服务器·人工智能·深度学习·机器学习·计算机视觉·数据挖掘·gpu算力