【深度学习】强化学习(六)基于值函数的学习方法

文章目录

一、强化学习问题

强化学习的基本任务是通过智能体与环境的交互学习一个策略,使得智能体能够在不同的状态下做出最优的动作,以最大化累积奖励。这种学习过程涉及到智能体根据当前状态选择动作,环境根据智能体的动作转移状态,并提供即时奖励的循环过程。

1、交互的对象

在强化学习中,有两个可以进行交互的对象:智能体环境

  • 智能体(Agent) :能感知外部环境的状态(State)和获得的奖励(Reward) ,并做出决策(Action)。智能体的决策和学习功能使其能够根据状态选择不同的动作,学习通过获得的奖励来调整策略。

  • 环境(Environment):是智能体外部的所有事物,对智能体的动作做出响应,改变状态,并反馈相应的奖励。

2、强化学习的基本要素

强化学习涉及到智能体与环境的交互,其基本要素包括状态、动作、策略、状态转移概率和即时奖励。

  • 状态(State):对环境的描述,可能是离散或连续的。

  • 动作(Action):智能体的行为,也可以是离散或连续的。

  • 策略(Policy):智能体根据当前状态选择动作的概率分布。

  • 状态转移概率(State Transition Probability):在给定状态和动作的情况下,环境转移到下一个状态的概率。

  • 即时奖励(Immediate Reward):智能体在执行动作后,环境反馈的奖励。

3、策略(Policy)

策略(Policy)就是智能体如何根据环境状态 𝑠 来决定下一步的动作 𝑎(智能体在特定状态下选择动作的规则或分布)。

  • 确定性策略(Deterministic Policy) 直接指定智能体应该采取的具体动作
  • 随机性策略(Stochastic Policy) 则考虑了动作的概率分布,增加了对不同动作的探索。

上述概念可详细参照:【深度学习】强化学习(一)强化学习定义

4、马尔可夫决策过程

为了简化描述,将智能体与环境的交互看作离散的时间序列 。智能体从感知到的初始环境 s 0 s_0 s0 开始,然后决定做一个相应的动作 a 0 a_0 a0,环境相应地发生改变到新的状态 s 1 s_1 s1,并反馈给智能体一个即时奖励 r 1 r_1 r1,然后智能体又根据状态 s 1 s_1 s1做一个动作 a 1 a_1 a1,环境相应改变为 s 2 s_2 s2,并反馈奖励 r 2 r_2 r2。这样的交互可以一直进行下去: s 0 , a 0 , s 1 , r 1 , a 1 , ... , s t − 1 , r t − 1 , a t − 1 , s t , r t , ... , s_0, a_0, s_1, r_1, a_1, \ldots, s_{t-1}, r_{t-1}, a_{t-1}, s_t, r_t, \ldots, s0,a0,s1,r1,a1,...,st−1,rt−1,at−1,st,rt,...,其中 r t = r ( s t − 1 , a t − 1 , s t ) r_t = r(s_{t-1}, a_{t-1}, s_t) rt=r(st−1,at−1,st) 是第 t t t 时刻的即时奖励。这个交互过程可以被视为一个马尔可夫决策过程(Markov Decision Process,MDP)

关于马尔可夫决策过程可详细参照:【深度学习】强化学习(二)马尔可夫决策过程

5、强化学习的目标函数

强化学习的目标是通过学习一个良好的策略 来使智能体在与环境的交互中获得尽可能多的平均回报 。强化学习的目标函数 J ( θ ) J(\theta) J(θ) 定义如下: J ( θ ) = E τ ∼ p θ ( τ ) [ G ( τ ) ] = E τ ∼ p θ ( τ ) [ ∑ t = 0 T − 1 γ t r t + 1 ] J(\theta) = \mathbb{E}{\tau \sim p{\theta}(\tau)}[G(\tau)] = \mathbb{E}{\tau \sim p{\theta}(\tau)}\left[\sum_{t=0}^{T-1} \gamma^t r_{t+1}\right] J(θ)=Eτ∼pθ(τ)[G(τ)]=Eτ∼pθ(τ)[t=0∑T−1γtrt+1]其中, θ \theta θ 表示策略函数的参数, τ \tau τ 表示强化学习的轨迹, γ \gamma γ 是折扣率......

  • 这个目标函数表达的是在策略 π θ \pi_{\theta} πθ 下,智能体与环境交互得到的总回报的期望。(这个期望是对所有可能的轨迹进行的)
  • 总回报(Total Return)是对一个轨迹的累积奖励,引入折扣率(Discount Factor)来平衡短期和长期回报。
    • 总回报:对于一次交互过程的轨迹,总回报是累积奖励的和。
    • 折扣回报:引入折扣率,考虑未来奖励的权重。

关于目标函数可详细参照:【深度学习】强化学习(三)强化学习的目标函数

6、值函数

在强化学习中,为了评估策略 π \pi π 的期望回报 ,引入了值函数的概念,包括状态值函数状态-动作值函数

值函数在强化学习中起到了桥梁的作用,连接了策略、状态和动作的关系。它们是智能体学习和改进的核心工具,使其能够在未知环境中获得最大的累积奖励。

  • 状态值函数 V ( s ) V(s) V(s) :表示从状态 s s s 开始,执行策略得到的期望总回报。

  • 状态-动作值函数 Q ( s , a ) Q(s, a) Q(s,a) :表示在状态 s s s 下执行动作 a a a 并执行策略得到的期望总回报。

【深度学习】强化学习(四)强化学习的值函数

7、深度强化学习

【深度学习】强化学习(五)深度强化学习

二、基于值函数的学习方法

相关推荐
Evand J26 分钟前
深度学习的应用综述
深度学习
sp_fyf_20241 小时前
[大语言模型-论文精读] 更大且更可指导的语言模型变得不那么可靠
人工智能·深度学习·神经网络·搜索引擎·语言模型·自然语言处理
肖遥Janic2 小时前
Stable Diffusion绘画 | 插件-Deforum:商业LOGO广告视频
人工智能·ai·ai作画·stable diffusion
@qike3 小时前
【C++】—— 日期类的实现
c语言·c++·笔记·算法·学习方法
我就是全世界3 小时前
一起了解AI的发展历程和AGI的未来展望
人工智能·agi
CV肉饼王3 小时前
基于CNN的水果分类与模型调优实验
深度学习·计算机视觉
colorknight3 小时前
1.2.3 HuggingFists安装说明-MacOS安装
人工智能·低代码·macos·huggingface·数据科学·ai agent
kuan_li_lyg3 小时前
MATLAB - 机械臂手眼标定(眼在手内) - 估计安装在机器人上的移动相机的姿态
开发语言·人工智能·matlab·机器人·ros·机械臂·手眼标定
山川而川-R4 小时前
Windows安装ollama和AnythingLLM
人工智能·python·语言模型·自然语言处理
Kuekua-seu4 小时前
diffusion vs GAN
人工智能·神经网络·生成对抗网络