学习pytorch20 pytorch完整的模型验证套路

pytorch完整的模型验证套路

B站小土堆pytorch学习视频 https://www.bilibili.com/video/BV1hE411t7RN/?p=32\&spm_id_from=pageDriver\&vd_source=9607a6d9d829b667f8f0ccaaaa142fcb

使用非数据集的测试数据,测试训练好模型的效果

复制代码
 测试:训练好的模型,提供对外真实数据的一个实际应用

从网上下载两张图片,整理图片的输入格式,输入模型测试模型效果

代码

py 复制代码
import torch
from torch import nn
from torchvision import transforms
from PIL import Image
import cv2

dog_path = './images/dog.jpg'
airplane_path = './images/airplane.jpg'
model_path = './images/net_epoch9_gpu.pth'

dog_pil = Image.open(dog_path)
airp_pil = Image.open(airplane_path)
print(dog_pil)  # <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=258x174 at 0x237CC2CBE50>
# RGB 3通道 匹配模型输入的通道数
dog_pil = dog_pil.convert('RGB')  # def convert(self, mode=None, matrix=None, dither=None, palette=Palette.WEB, colors=256):
airp_pil = airp_pil.convert('RGB')
# dog_cv = cv2.imread(dog_path)  # numpy.array
# # print(dog_cv)
# img_trans = torchvision.transforms.ToTensor()  # 实例化转tensor的类
# dog_tensor = img_trans(dog_pil)
# dog_cv_tensor = img_trans(dog_cv)
# print(dog_tensor)
# print(dog_tensor.shape)
# print(dog_cv_tensor)
# 输入模型shape 需要是32*32大小的
transform = transforms.Compose([transforms.Resize((32,32)),
                                transforms.ToTensor()])
dog_tensor = transform(dog_pil)
airp_tensor = transform(airp_pil)
# print(dog_tensor)
print(dog_tensor.shape, airp_tensor.shape)


class Cifar10Net(nn.Module):
    def __init__(self):
        super(Cifar10Net, self).__init__()
        self.net = nn.Sequential(
            nn.Conv2d(in_channels=3, out_channels=32, kernel_size=5, stride=1, padding=2),
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(kernel_size=2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(kernel_size=2),
            nn.Flatten(),
            nn.Linear(64*4*4, 64),
            nn.ReLU(),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.net(x)
        return x

# 加载模型要考虑是以哪种形式保存的模型  模型保存方式1:保存模型结构和参数 方式二:只保存模型参数
model = torch.load(model_path, map_location=torch.device('cpu'))
print(model)
dog_tensor = dog_tensor.reshape((1, 3, 32, 32))
airp_tensor = airp_tensor.reshape((1, 3, 32, 32))
model.eval() # 设置模型为测试状态 网络层有dropout batchNormal层不加eval函数会有问题
with torch.no_grad(): # 测试不做梯度计算 节省算力
    dog_output = model(dog_tensor)
    airp_output = model(airp_tensor)
print(dog_output)
print(dog_output.argmax())
print(dog_output.argmax(1))
print(airp_output)
print(airp_output.argmax(1))  # 概率值不便于解读 使用argmax 可以很方便的读出模型预测的是哪个类别

预测结果

sh 复制代码
tensor([[ 1.1317, -4.3441,  3.2116,  2.8930,  2.6749,  4.6079, -3.2860,  3.1357,
         -3.0432, -4.1703]])
tensor(5)
tensor([5])
tensor([[ 5.5993, -0.6140,  4.4758,  0.8463,  1.6311, -1.0217, -3.9990, -2.8343,
          1.1050, -1.6423]])
tensor([0])

预测结果和训练数据的标注一直,预测正确

解决报错

RuntimeError: mat1 and mat2 shapes cannot be multiplied (64x16 and 1024x64)

解决: dog_tensor = dog_tensor.reshape((1, 3, 32, 32)) 转换输入是4维的, 模型输入有一个batch-size维度

RuntimeError: Attempting to deserialize object on a CUDA device but torch.cuda.is_available() is False. If you are running on a CPU-only machine, please use torch.load with map_location=torch.device('cpu') to map your storages to the CPU.

解决:model = torch.load(model_path, map_location=torch.device('cpu'))

在gpu上训练的模型,要在cpu上测试,模型加载的时候指定cpu设备

相关推荐
烛阴6 小时前
简单入门Python装饰器
前端·python
好开心啊没烦恼6 小时前
Python 数据分析:numpy,说人话,说说数组维度。听故事学知识点怎么这么容易?
开发语言·人工智能·python·数据挖掘·数据分析·numpy
面朝大海,春不暖,花不开6 小时前
使用 Python 实现 ETL 流程:从文本文件提取到数据处理的全面指南
python·etl·原型模式
2301_805054567 小时前
Python训练营打卡Day59(2025.7.3)
开发语言·python
万千思绪8 小时前
【PyCharm 2025.1.2配置debug】
ide·python·pycharm
微风粼粼9 小时前
程序员在线接单
java·jvm·后端·python·eclipse·tomcat·dubbo
云天徽上10 小时前
【PaddleOCR】OCR表格识别数据集介绍,包含PubTabNet、好未来表格识别、WTW中文场景表格等数据,持续更新中......
python·ocr·文字识别·表格识别·paddleocr·pp-ocrv5
你怎么知道我是队长10 小时前
python-input内置函数
开发语言·python
叹一曲当时只道是寻常10 小时前
Python实现优雅的目录结构打印工具
python
hbwhmama11 小时前
python高级变量XIII
python