【力扣】刷题备忘录-动归-343. 整数拆分

343. 整数拆分

c 复制代码
class Solution {
public:
    int integerBreak(int n) {
        vector<int> dp(n+1);
        dp[2] = 1;
        for (int i = 3; i <= n; i++) {
            for (int j = 1; j < i - 1; j++){ // 这里j的最大值去到i-2就可以,这时i - j = 2 正好能用初始化的值
                dp[i] = max(dp[i], max(j * dp[i - j], j * (i - j))); // 1. 执行拆分 有两种可能的来源 
                                                                    //2. 还要和dp[i]去比 然后更新
                // std::cout << "i的当前值是:" << i << std::endl;
                // std::cout << "dp i的当前值是:" << dp[i] << std::endl;
            }
        }
       return dp[n];
    }
};
  1. 这题难点在于想到 有两种可能的来源 一个是当前拆分后直接相乘的结果 另一个是拆出来的数字对应到dp table上的解相乘的结果
  2. 优化点在于想到 拆分相乘的时候j不需要去查dp[j]。
  • 至于原因,代码随想录给的是因为拆分j的情况,在遍历j = 1 to i -2 的过程中都考虑到了。
  • 我认为还有一个解释是,把这个求解过程展开,比如,dp[5] = 2 × 3, dp[6] = 3 × 3等,就会发现其实最大值都是由2 3组成的。所以把代码又优化成了下面这样:
c 复制代码
class Solution {
public:
    int integerBreak(int n) {
        if (n <= 3) return n -1; // 这里要记得处理,不然当n<=3的时候,循环里面dp[4]取不到值 会报错
        vector<int> dp(n+1);
        dp[2] = 1;
        dp[3] = 2;
        for (int i = 4; i <= n; i++) {
            for (int j = 1; j <= 3; j++){  // 这里只用考虑j <= 3的情况
                dp[i] = max(dp[i], max(j * dp[i - j], j * (i - j))); 
            }
        }
       return dp[n];
    }
};

其实分析到这里也可以写贪心了,但二刷的事情就留给二刷去做吧,这个优化方案其实已经不是动归本身了,而是基于数学做的改进了。

相关推荐
微露清风4 小时前
系统性学习C++-第十八讲-封装红黑树实现myset与mymap
java·c++·学习
CSARImage5 小时前
C++读取exe程序标准输出
c++
一只小bit5 小时前
Qt 常用控件详解:按钮类 / 显示类 / 输入类属性、信号与实战示例
前端·c++·qt·gui
一条大祥脚5 小时前
26.1.9 轮廓线dp 状压最短路 构造
数据结构·c++·算法
项目題供诗6 小时前
C语言基础(一)
c++
@areok@6 小时前
C++opencv图片(mat)传入C#bitmap图片
开发语言·c++·opencv
鸽芷咕6 小时前
【2025年度总结】时光知味,三载同行:落笔皆是沉淀,前行自有光芒
linux·c++·人工智能·2025年度总结
羑悻的小杀马特6 小时前
指尖敲代码,笔尖写成长:2025年度总结与那些没说出口的碎碎念
linux·c++·博客之星·2025年度总结
linweidong7 小时前
C++thread pool(线程池)设计应关注哪些扩展性问题?
java·数据库·c++
cpp_25017 小时前
P2708 硬币翻转
数据结构·c++·算法·题解·洛谷