【力扣】刷题备忘录-动归-343. 整数拆分

343. 整数拆分

c 复制代码
class Solution {
public:
    int integerBreak(int n) {
        vector<int> dp(n+1);
        dp[2] = 1;
        for (int i = 3; i <= n; i++) {
            for (int j = 1; j < i - 1; j++){ // 这里j的最大值去到i-2就可以,这时i - j = 2 正好能用初始化的值
                dp[i] = max(dp[i], max(j * dp[i - j], j * (i - j))); // 1. 执行拆分 有两种可能的来源 
                                                                    //2. 还要和dp[i]去比 然后更新
                // std::cout << "i的当前值是:" << i << std::endl;
                // std::cout << "dp i的当前值是:" << dp[i] << std::endl;
            }
        }
       return dp[n];
    }
};
  1. 这题难点在于想到 有两种可能的来源 一个是当前拆分后直接相乘的结果 另一个是拆出来的数字对应到dp table上的解相乘的结果
  2. 优化点在于想到 拆分相乘的时候j不需要去查dp[j]。
  • 至于原因,代码随想录给的是因为拆分j的情况,在遍历j = 1 to i -2 的过程中都考虑到了。
  • 我认为还有一个解释是,把这个求解过程展开,比如,dp[5] = 2 × 3, dp[6] = 3 × 3等,就会发现其实最大值都是由2 3组成的。所以把代码又优化成了下面这样:
c 复制代码
class Solution {
public:
    int integerBreak(int n) {
        if (n <= 3) return n -1; // 这里要记得处理,不然当n<=3的时候,循环里面dp[4]取不到值 会报错
        vector<int> dp(n+1);
        dp[2] = 1;
        dp[3] = 2;
        for (int i = 4; i <= n; i++) {
            for (int j = 1; j <= 3; j++){  // 这里只用考虑j <= 3的情况
                dp[i] = max(dp[i], max(j * dp[i - j], j * (i - j))); 
            }
        }
       return dp[n];
    }
};

其实分析到这里也可以写贪心了,但二刷的事情就留给二刷去做吧,这个优化方案其实已经不是动归本身了,而是基于数学做的改进了。

相关推荐
持梦远方4 分钟前
C 语言基础入门:基本数据类型与运算符详解
c语言·开发语言·c++
YuTaoShao17 分钟前
【LeetCode 热题 100】73. 矩阵置零——(解法二)空间复杂度 O(1)
java·算法·leetcode·矩阵
江理不变情39 分钟前
图像质量对比感悟
c++·人工智能
apocelipes2 小时前
记一次ADL导致的C++代码编译错误
c++·开发工具和环境
杰克尼2 小时前
1. 两数之和 (leetcode)
数据结构·算法·leetcode
YuTaoShao3 小时前
【LeetCode 热题 100】56. 合并区间——排序+遍历
java·算法·leetcode·职场和发展
Code Warrior3 小时前
【每日算法】专题五_位运算
开发语言·c++
OneQ6667 小时前
C++讲解---创建日期类
开发语言·c++·算法
JoJo_Way7 小时前
LeetCode三数之和-js题解
javascript·算法·leetcode
Coding小公仔9 小时前
C++ bitset 模板类
开发语言·c++