【概率方法】MCMC 之 Gibbs 采样

上一篇文章讲到,MCMC 中的 HM 算法,它可以解决拒绝采样效率低的问题,但是实际上,当维度高的时候 HM 算法还是在同时处理多个维度,以两个变量 x = [ x , y ] \mathbf{x} = [x,y] x=[x,y] 来说,也就是同时从联合分布里面 p ( x ) = p ( x , y ) p(\mathbf{x}) = p(x,y) p(x)=p(x,y) 进行采样,在某些情况下有维度灾难的问题。

有些时候,我们从联合分布 p ( x , y ) p(x,y) p(x,y) 里面采样很难,但是从条件分布 p ( x ∣ y ) , p ( y ∣ x ) p(x|y), p(y|x) p(x∣y),p(y∣x) 里面采样很容易,

Gibbs 采样

为了解决维度灾难的问题,Gibbs 把直接从联合分布 p ( x , y ) p(x,y) p(x,y)里面进行采样的问题转化成了逐个对每一个维度的条件分布进行采样 :

对于二维情况,我们先得到每一个维度在给定其他维度时候的条件分布:
p ( x ∣ y ) , p ( y ∣ x ) p(x|y), \ \ \ p(y|x) p(x∣y), p(y∣x)

先从一个任意选择的点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 开始。

先给定 y 0 y_0 y0 ,采样 x 1 x_1 x1: p ( x 1 ∣ y 0 ) p(x_1|y_0) p(x1∣y0)

再给定 x 1 x_1 x1,采样 y 1 y_1 y1: p ( y 1 ∣ x 1 ) p(y_1|x_1) p(y1∣x1)

对所有维度轮换采样完成之后,就得到了新的采样点 ( x 1 , y 1 ) (x_1,y_1) (x1,y1),如此进行下去,采样得到整个序列
{ x 0 , . . . , x t } = { ( x 0 , y 0 ) , . . . , ( x t , y t ) } \{\mathbf{x}_0,...,\mathbf{x}_t\} = \{(x_0,y_0),...,(x_t,y_t)\} {x0,...,xt}={(x0,y0),...,(xt,yt)}

优点

  • Gibbs 采样接受率为 1,采样效率更高
  • 在知道各个维度的条件分布的时候,可以处理高维分布

  • 由于马尔可夫性,前后的样本是相关的,所以也可以用 Thinning 降低自相关性,或者其他方法。
  • 当目标分布比较极端的时候可能难以收敛

代码

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import pearsonr

# Goal: Sample from bivariate Normal

python 复制代码
automatic_samples = np.random.multivariate_normal([0,0], [[1, 0.5], [0.5,1]], 10000)
plt.scatter(automatic_samples[:,0], automatic_samples[:,1], s=5)![请添加图片描述](https://img-blog.csdnimg.cn/direct/b7f96ec7214f4c64be016e1a20df48f6.png)

# Gibbs Sampling

python 复制代码
samples = {'x': [1], 'y': [-1]}

num_samples = 10000

for _ in range(num_samples):
    curr_y = samples['y'][-1]
    new_x = np.random.normal(curr_y/2, np.sqrt(3/4))
    new_y = np.random.normal(new_x/2, np.sqrt(3/4))
    samples['x'].append(new_x)
    samples['y'].append(new_y)

plt.scatter(samples['x'], samples['y'], s=5)

和 numpy 自带采样的分布是匹配的

python 复制代码
plt.hist(automatic_samples[:,0], bins=20, density=True, alpha=0.5)
plt.hist(samples['x'], bins=20, density=True, alpha=0.5)
python 复制代码
plt.hist(automatic_samples[:,1], bins=20, density=True, alpha=0.5)
plt.hist(samples['y'], bins=20, density=True, alpha=0.5)

查看相关性

python 复制代码
plt.scatter(automatic_samples[:-1,0], automatic_samples[1:,0], s=5)
print(pearsonr(automatic_samples[:-1,0], automatic_samples[1:,0])[0])
python 复制代码
plt.scatter(samples['x'][:-1], samples['x'][1:], s=5)
print(pearsonr(samples['x'][:-1], samples['x'][1:])[0])
相关推荐
双向339 分钟前
私有化部署全攻略:开源模型本地化改造的性能与安全评测
人工智能
1892280486110 分钟前
NY243NY253美光固态闪存NY257NY260
大数据·网络·人工智能·缓存
AI波克布林11 分钟前
发文暴论!线性注意力is all you need!
人工智能·深度学习·神经网络·机器学习·注意力机制·线性注意力
张子夜 iiii11 分钟前
机器学习算法系列专栏:主成分分析(PCA)降维算法(初学者)
人工智能·python·算法·机器学习
GIS宇宙14 分钟前
五分钟免费开启你的Vibe Coding之旅!
人工智能
用户51914958484515 分钟前
Three.js实例化技术:高效渲染数千3D对象
人工智能·aigc
weixin_4569042717 分钟前
一文讲清楚Pytorch 张量、链式求导、正向传播、反向求导、计算图等基础知识
人工智能·pytorch·学习
ciku29 分钟前
Spring AI Starter和文档解读
java·人工智能·spring
Blossom.11837 分钟前
把 AI 推理塞进「 8 位 MCU 」——0.5 KB RAM 跑通关键词唤醒的魔幻之旅
人工智能·笔记·单片机·嵌入式硬件·深度学习·机器学习·搜索引擎
小贤编程手记1 小时前
毛绒变装、吉卜力风...快手AI视频可灵为什么好用?
人工智能·数码产品