1.前言
cesium中提供了一些高级的api,可以自己写一些shader来制作炫酷的效果。
ShaderToy 是一个可以在线编写、测试和分享图形渲染着色器的网站。它提供了一个图形化的编辑器,可以让用户编写基于 WebGL 的 GLSL 着色器代码,并实时预览渲染结果。
ShaderToy 支持多种渲染效果,包括 2D 和 3D 图形、粒子系统、动画等。用户可以通过调整着色器代码中的参数来实现各种不同的视觉效果。
此外,ShaderToy 还提供了一个社区功能,用户可以分享自己的着色器作品,并与其他用户进行交流和学习。这个社区中有很多优秀的着色器作品,涵盖了各种不同的主题和风格。
总之,ShaderToy 是一个非常有趣和实用的工具,它为图形学爱好者提供了一个学习和创作的平台,同时也为 WebGL 开发者提供了一个快速测试和演示的工具。
现在我们抽取一个简单的额shadertoy例子在cesium中实现。
2.效果图
3.示例代码
javascript
const viewer = new Cesium.Viewer("cesiumContainer");
/*
* @Description: 电弧球体效果(参考开源代码)
* @Version: 1.0
* @Author: Julian
* @Date: 2022-03-04 15:57:40
* @LastEditors: Julian
* @LastEditTime: 2022-03-04 16:20:31
*/
class EllipsoidElectricMaterialProperty {
constructor(options) {
this._definitionChanged = new Cesium.Event();
this._color = undefined;
this._speed = undefined;
this.color = options.color;
this.speed = options.speed;
}
get isConstant() {
return false;
}
get definitionChanged() {
return this._definitionChanged;
}
getType(time) {
return Cesium.Material.EllipsoidElectricMaterialType;
}
getValue(time, result) {
if (!Cesium.defined(result)) {
result = {};
}
result.color = Cesium.Property.getValueOrDefault(this._color, time, Cesium.Color.RED, result.color);
result.speed = Cesium.Property.getValueOrDefault(this._speed, time, 10, result.speed);
return result;
}
equals(other) {
return (this === other ||
(other instanceof EllipsoidElectricMaterialProperty &&
Cesium.Property.equals(this._color, other._color) &&
Cesium.Property.equals(this._speed, other._speed)));
}
}
Object.defineProperties(EllipsoidElectricMaterialProperty.prototype, {
color: Cesium.createPropertyDescriptor('color'),
speed: Cesium.createPropertyDescriptor('speed')
});
Cesium.EllipsoidElectricMaterialProperty = EllipsoidElectricMaterialProperty;
Cesium.Material.EllipsoidElectricMaterialProperty = 'EllipsoidElectricMaterialProperty';
Cesium.Material.EllipsoidElectricMaterialType = 'EllipsoidElectricMaterialType';
Cesium.Material.EllipsoidElectricMaterialSource =
`
#define UVScale 0.4
#define Speed 0.6
#define FBM_WarpPrimary -0.24
#define FBM_WarpSecond 0.29
#define FBM_WarpPersist 0.78
#define FBM_EvalPersist 0.62
#define FBM_Persistence 0.5
#define FBM_Lacunarity 2.2
#define FBM_Octaves 5
//fork from Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
vec4 hash43(vec3 p)
{
vec4 p4 = fract(vec4(p.xyzx) * vec4(1031, .1030, .0973, .1099));
p4 += dot(p4, p4.wzxy+19.19);
return -1.0 + 2.0 * fract(vec4(
(p4.x + p4.y)*p4.z, (p4.x + p4.z)*p4.y,
(p4.y + p4.z)*p4.w, (p4.z + p4.w)*p4.x)
);
}
//offsets for noise
const vec3 nbs[] = vec3[8] (
vec3(0.0, 0.0, 0.0),vec3(0.0, 1.0, 0.0),vec3(1.0, 0.0, 0.0),vec3(1.0, 1.0, 0.0),
vec3(0.0, 0.0, 1.0),vec3(0.0, 1.0, 1.0),vec3(1.0, 0.0, 1.0),vec3(1.0, 1.0, 1.0)
);
//'Simplex out of value noise', forked from: https://www.shadertoy.com/view/XltXRH
//not sure about performance, is this faster than classic simplex noise?
vec4 AchNoise3D(vec3 x)
{
vec3 p = floor(x);
vec3 fr = smoothstep(0.0, 1.0, fract(x));
vec4 L1C1 = mix(hash43(p+nbs[0]), hash43(p+nbs[2]), fr.x);
vec4 L1C2 = mix(hash43(p+nbs[1]), hash43(p+nbs[3]), fr.x);
vec4 L1C3 = mix(hash43(p+nbs[4]), hash43(p+nbs[6]), fr.x);
vec4 L1C4 = mix(hash43(p+nbs[5]), hash43(p+nbs[7]), fr.x);
vec4 L2C1 = mix(L1C1, L1C2, fr.y);
vec4 L2C2 = mix(L1C3, L1C4, fr.y);
return mix(L2C1, L2C2, fr.z);
}
vec4 ValueSimplex3D(vec3 p)
{
vec4 a = AchNoise3D(p);
vec4 b = AchNoise3D(p + 120.5);
return (a + b) * 0.5;
}
//my FBM
vec4 FBM(vec3 p)
{
vec4 f, s, n = vec4(0.0);
float a = 1.0, w = 0.0;
for (int i=0; i<FBM_Octaves; i++)
{
n = ValueSimplex3D(p);
f += (abs(n)) * a; //billowed-like
s += n.zwxy *a;
a *= FBM_Persistence;
w *= FBM_WarpPersist;
p *= FBM_Lacunarity;
p += n.xyz * FBM_WarpPrimary *w;
p += s.xyz * FBM_WarpSecond;
p.z *= FBM_EvalPersist +(f.w *0.5+0.5) *0.015;
}
return f;
}
czm_material czm_getMaterial(czm_materialInput materialInput)
{
czm_material material = czm_getDefaultMaterial(materialInput);
vec2 st = materialInput.st;
vec4 fbm = (FBM(vec3(st, czm_frameNumber * speed +100.0)));
float explosionGrad = (dot(fbm.xyzw, fbm.yxwx)) *0.5;
explosionGrad = pow(explosionGrad, 1.3);
explosionGrad = smoothstep(0.0,1.0,explosionGrad);
#define color0 vec3(1.2,0.0,0.0)
#define color1 vec3(0.9,0.7,0.3)
material.diffuse = explosionGrad * mix(color0, color1, explosionGrad) *1.2 +0.05;;
material.alpha = 1.0;
return material;
}
`;
Cesium.Material._materialCache.addMaterial(Cesium.Material.EllipsoidElectricMaterialType, {
fabric: {
type: Cesium.Material.EllipsoidElectricMaterialType,
uniforms: {
color: new Cesium.Color(1.0, 0.0, 0.0, 1.0),
speed: 10.0
},
source: Cesium.Material.EllipsoidElectricMaterialSource
},
translucent: function(material) {
return true;
}
});
const entity=viewer.entities.add({
position: Cesium.Cartesian3.fromDegrees(113.9236839, 22.528061),
ellipsoid: {
radii: new Cesium.Cartesian3(1000.0, 1000.0, 1000.0),
material: new Cesium.EllipsoidElectricMaterialProperty({
color: new Cesium.Color(1.0, 1.0, 0.0, 1.0),
speed: 0.01
})
}
});
viewer.flyTo(entity);