4种Python中基于字段的不使用元类的ORM实现方法

本文分享自华为云社区《Python中基于字段的不使用元类的ORM实现》,作者: 柠檬味拥抱 。

不使用元类的简单ORM实现

在 Python 中,ORM(Object-Relational Mapping)是一种将对象和数据库之间的映射关系进行转换的技术,使得通过面向对象的方式来操作数据库更加方便。通常,我们使用元类(metaclass)来实现ORM,但是本文将介绍一种不使用元类的简单ORM实现方式。

Field类

首先,我们定义一个Field类,用于表示数据库表中的字段。这个类包含字段的名称和类型等信息,并且支持一些比较操作,以便后续构建查询条件。

ruby 复制代码
class Field:
    def __init__(self, **kwargs):
        self.name = kwargs.get('name')
        self.column_type = kwargs.get('column_type')

    def __eq__(self, other):
        return Compare(self, '=', other)

    # 其他比较操作略...

Compare类

为了构建查询条件,我们引入了一个Compare类,用于表示字段之间的比较关系。它可以支持链式操作,构建复杂的查询条件。

python 复制代码
class Compare:
    def __init__(self, left: Field, operation: str, right: Any):
        self.condition = f'`{left.name}` {operation} "{right}"'

    def __or__(self, other: "Compare"):
        self.condition = f'({self.condition}) OR ({other.condition})'
        return self

    def __and__(self, other: "Compare"):
        self.condition = f'({self.condition}) AND ({other.condition})'
        return self

Model类

接下来,我们定义Model类,表示数据库中的表。该类通过Field类的实例来定义表的字段,并提供了插入数据的方法。

python 复制代码
class Model:
    def __init__(self, **kwargs):
        _meta = self.get_class_meta()

        for k, v in kwargs.items():
            if k in _meta:
                self.__dict__[k] = v

    @classmethod
    def get_class_meta(cls) -> Dict:
        if hasattr(cls, '_meta'):
            return cls.__dict__['_meta']
        _meta = {}

        for k, v in cls.__dict__.items():
            if isinstance(v, Field):
                if v.name is None:
                    v.name = k
                name = v.name
                _meta[k] = (name, v)

        table = cls.__dict__.get('__table__')
        table = cls.__name__ if table is None else table
        _meta['__table__'] = table

        setattr(cls, '_meta', _meta)

        return _meta

    def insert(self):
        _meta = self.get_class_meta()
        column_li = []
        val_li = []

        for k, v in self.__dict__.items():
            field_tuple = _meta.get(k)
            if field_tuple:
                column, field = field_tuple
                column_li.append(column)
                val = str(v) if field.column_type == 'INT' else f'"{str(v)}"'
                val_li.append(val)

        sql = f'INSERT INTO {_meta["__table__"]} ({",".join(column_li)}) VALUES ({",".join(val_li)});'
        print(sql)

Query类

最后,我们实现了Query类,用于构建数据库查询。这个类支持链式调用,可以设置查询条件、排序等。

python 复制代码
class Query:
    def __init__(self, cls: Model):
        self._model = cls
        self._order_columns = None
        self._desc = ''
        self._meta = self._model.get_class_meta()
        self._compare = None
        self.sql = ''

    def _get(self) -> str:
        sql = ''

        if self._compare:
            sql += f' WHERE {self._compare.condition}'

        if self._order_columns:
            sql += f' ORDER BY {self._order_columns}'

        sql += f' {self._desc}'
        return sql

    def get(self, *args: Field) -> List[Model]:
        sql = self._get()
        table = self._meta['__table__']

        column_li = []

        if len(args) > 0:
            for field in args:
                column_li.append(f'`{field.name}`')
        else:
            for v in self._meta.values():
                if type(v) == tuple and isinstance(v[1], Field):
                    column_li.append(f'`{v[0]}`')

        columns = ",".join(column_li)
        sql = f'SELECT {columns} FROM {table} {sql}'
        self.sql = sql
        print(self.sql)

    def order_by(self, columns: Union[List, str], desc: bool = False) -> "Query":
        if isinstance(columns, str):
            self._order_columns = f'`{columns}`'
        elif isinstance(columns, list):
            self._order_columns = ','.join([f'`{x}`' for x in columns])

        self._desc = 'DESC' if desc else ''
        return self

    def where(self, compare: "Compare") -> "Query":
        self._compare = compare
        return self

示例使用

现在,我们可以定义一个模型类,并使用这个简单的ORM实现进行数据操作。

ini 复制代码
class User(Model):
    name = Field()
    age = Field()

# 插入数据
user = User(name='Tom', age=24)
user.insert()

# 构建查询条件并查询数据
User.query().where((User.name == 'Tom') & (User.age >= 20)).order_by('age').get()

这样,我们就完成了一个不使用元类的简单ORM实现。尽管相较于使用元类的方式,代码结构更为简单,但在实际应用中,根据项目需求和团队的约定,选择合适的实现方式是很重要的。

我们已经介绍了一个基于 Python 的简单 ORM 实现,它不依赖于元类。在这一部分,我们将继续探讨这个实现,深入了解查询构建和更复杂的用法。

扩展查询功能

我们的查询功能还比较简单,为了更好地支持复杂查询,我们可以添加更多的查询方法和条件。

支持 LIMIT 和 OFFSET

python 复制代码
class Query:
    # ...

    def limit(self, num: int) -> "Query":
        self.sql += f' LIMIT {num}'
        return self

    def offset(self, num: int) -> "Query":
        self.sql += f' OFFSET {num}'
        return self

支持 GROUP BY 和 HAVING

python 复制代码
class Query:
    # ...

    def group_by(self, columns: Union[List, str]) -> "Query":
        if isinstance(columns, str):
            columns = [columns]
        self.sql += f' GROUP BY {",".join([f"`{x}`" for x in columns])}'
        return self

    def having(self, condition: Compare) -> "Query":
        self.sql += f' HAVING {condition.condition}'
        return self

示例用法

scss 复制代码
class User(Model):
    name = Field()
    age = Field()

# 插入数据
user = User(name='Tom', age=24)
user.insert()

# 构建查询条件并查询数据
query = User.query().where((User.name == 'Tom') & (User.age >= 20)).order_by('age').limit(1).offset(0)
query.get(User.name, User.age)  # 仅查询指定字段

# 更复杂的查询
query = User.query().group_by('age').having((User.age > 20) & (User.age < 30)).order_by('age').limit(10).offset(0)
query.get(User.age, User.count(User.name))  # 查询年龄在20到30之间的用户数量

通过引入额外的查询功能,我们使得这个简单的 ORM 实现更加强大和灵活。

总结

在这个系列的文章中,我们通过不使用元类的方式,实现了一个简单的 Python ORM。我们定义了 Field 类表示数据库字段,Model 类表示数据库表,以及 Query 类用于构建和执行查询。通过这个实现,我们可以方便地进行数据操作,构建灵活的查询条件,而不需要深入理解元类的概念。

然而,这个简单的 ORM 仍然有一些局限性,例如不支持复杂的表关联等功能。在实际项目中,选择使用元类的 ORM 实现或其他成熟的 ORM 框架取决于项目的需求和团队的技术选型。希望这个实现能够为你提供一种不同的思路,促使更多的思考和探讨。

点击关注,第一时间了解华为云新鲜技术~

相关推荐
_.Switch19 分钟前
Python 自动化运维持续优化与性能调优
运维·开发语言·python·缓存·自动化·运维开发
2401_8576363919 分钟前
计算机课程管理平台:Spring Boot与工程认证的结合
java·spring boot·后端
J不A秃V头A25 分钟前
Python爬虫:获取国家货币编码、货币名称
开发语言·爬虫·python
也无晴也无风雨1 小时前
深入剖析输入URL按下回车,浏览器做了什么
前端·后端·计算机网络
阿斯卡码2 小时前
jupyter添加、删除、查看内核
ide·python·jupyter
埃菲尔铁塔_CV算法4 小时前
图像算法之 OCR 识别算法:原理与应用场景
图像处理·python·计算机视觉
封步宇AIGC5 小时前
量化交易系统开发-实时行情自动化交易-3.4.2.Okex行情交易数据
人工智能·python·机器学习·数据挖掘
2401_857610035 小时前
多维视角下的知识管理:Spring Boot应用
java·spring boot·后端
封步宇AIGC5 小时前
量化交易系统开发-实时行情自动化交易-2.技术栈
人工智能·python·机器学习·数据挖掘
代码小鑫5 小时前
A027-基于Spring Boot的农事管理系统
java·开发语言·数据库·spring boot·后端·毕业设计