PyTorch官网demo解读——第一个神经网络(2)

上一篇:PyTorch官网demo解读------第一个神经网络(1)

继上一篇文章我们展示了第一个神经网络的完整代码,今天我们来聊聊这个神经网络的模型设计。

这个demo实际上只使用了一个简单的线性模型:y = wx + b;

手写数字识别最后其实只输出10个结果(0~9),所以我们可以将结果表示为包含十个数的一维矩阵 [10],矩阵中的每个值是预测的概率值,表示索引代表的数字的概率。

我们的图片是28*28=784像素的,我们用一维矩阵[784]来表示,所以我们的目标就是将784 => 10。因为这个demo中只使用了一层神经网络,于是我们将我们的权重参数设计成784x10的二维矩阵[784, 10],这样每张图片的像素值乘以权重矩阵就得出10个数的一维矩阵[10],再加上10个数的偏差值bias就是我们预测的结果了。是不是很简单:=))

每个权重参数其实就是一个神经元,那么我们总共只使用了7840个神经元,就可以识别数字了。

每个神经元执行的计算也很简单,就是进行了一次 y = wx + b 的函数运算,结果y再进行一次激活函数运算(log_softmax)

模型运行简化流程如下图:
对应demo中的关键代码:
python 复制代码
# 初始化权重和偏差值,权重是随机出来的784*10的矩阵,偏差初始化为0
weights = torch.randn(784, 10) / math.sqrt(784)
weights.requires_grad_()
bias = torch.zeros(10, requires_grad=True)

# 激活函数
def log_softmax(x):
    return x - x.exp().sum(-1).log().unsqueeze(-1)

# 定义模型:y = wx + b
# 实际上就是单层的Linear模型
def model(xb):
    return log_softmax(xb @ weights + bias)

ok,今天就先聊到这里吧!

原来数学如此的美,代码的尽头是数学?

相关推荐
Coder_Boy_5 分钟前
基于SpringAI的智能平台基座开发-(六)
java·数据库·人工智能·spring·langchain·langchain4j
泰迪智能科技019 分钟前
分享图书推荐 | 数字图像处理实战
人工智能·深度学习·计算机视觉
北京盟通科技官方账号15 分钟前
精准医疗的未来之一:EtherCAT携手实时解决方案助力医疗器械中的控制与传输
人工智能·机器人·自动化·健康医疗·制造
Rabbit_QL19 分钟前
【深度学习原理】数值稳定性(二):梯度是如何在深度网络中消失与爆炸的
人工智能·深度学习
热爱专研AI的学妹26 分钟前
数眼搜索API与博查技术特性深度对比:实时性与数据完整性的核心差异
大数据·开发语言·数据库·人工智能·python
thinkerCoder30 分钟前
SmoothQuant:一种用于大型语言模型的准确高效的训练后量化方法
人工智能·语言模型·自然语言处理
HUI 别摸鱼了33 分钟前
【Gabor滤波】
人工智能
好奇龙猫39 分钟前
【AI学习-comfyUI学习-第二十四节-open(contorlnet多重处理)+图生图openpose-各个部分学习】
人工智能·学习
LiFileHub1 小时前
ISO/IEC 5338:2023中文版
人工智能
慎独4131 小时前
政策东风起,财富新赛道:绿色积分与消费商引领新型消费革命
人工智能