PyTorch官网demo解读——第一个神经网络(2)

上一篇:PyTorch官网demo解读------第一个神经网络(1)

继上一篇文章我们展示了第一个神经网络的完整代码,今天我们来聊聊这个神经网络的模型设计。

这个demo实际上只使用了一个简单的线性模型:y = wx + b;

手写数字识别最后其实只输出10个结果(0~9),所以我们可以将结果表示为包含十个数的一维矩阵 [10],矩阵中的每个值是预测的概率值,表示索引代表的数字的概率。

我们的图片是28*28=784像素的,我们用一维矩阵[784]来表示,所以我们的目标就是将784 => 10。因为这个demo中只使用了一层神经网络,于是我们将我们的权重参数设计成784x10的二维矩阵[784, 10],这样每张图片的像素值乘以权重矩阵就得出10个数的一维矩阵[10],再加上10个数的偏差值bias就是我们预测的结果了。是不是很简单:=))

每个权重参数其实就是一个神经元,那么我们总共只使用了7840个神经元,就可以识别数字了。

每个神经元执行的计算也很简单,就是进行了一次 y = wx + b 的函数运算,结果y再进行一次激活函数运算(log_softmax)

模型运行简化流程如下图:
对应demo中的关键代码:
python 复制代码
# 初始化权重和偏差值,权重是随机出来的784*10的矩阵,偏差初始化为0
weights = torch.randn(784, 10) / math.sqrt(784)
weights.requires_grad_()
bias = torch.zeros(10, requires_grad=True)

# 激活函数
def log_softmax(x):
    return x - x.exp().sum(-1).log().unsqueeze(-1)

# 定义模型:y = wx + b
# 实际上就是单层的Linear模型
def model(xb):
    return log_softmax(xb @ weights + bias)

ok,今天就先聊到这里吧!

原来数学如此的美,代码的尽头是数学?

相关推荐
GoldenSpider.AI10 分钟前
突破AI视频一致性瓶颈:“无废话”四步电影级工作流
人工智能·flow·elevenlabs·google whisk·gemini gem
编程小白_正在努力中14 分钟前
第七章深度解析:从零构建智能体框架——模块化设计与全流程落地指南
人工智能·深度学习·大语言模型·agent·智能体
机器之心15 分钟前
VinciCoder:多模态统一代码生成框架和视觉反馈强化学习,数据代码模型权重已开源
人工智能·openai
化作星辰26 分钟前
深度学习_三层神经网络传播案例(L0->L1->L2)
人工智能·深度学习·神经网络
机器之心31 分钟前
首个完整开源的生成式推荐框架MiniOneRec,轻量复现工业级OneRec!
人工智能·openai
_codemonster1 小时前
深度学习实战(基于pytroch)系列(十五)模型构造
人工智能·深度学习
海域云赵从友1 小时前
2025年印尼服务器选型指南:跨境业务落地的合规与性能双解
人工智能·git·github
sponge'2 小时前
opencv学习笔记9:基于CNN的mnist分类任务
深度学习·神经网络·cnn
用户5191495848452 小时前
cURL变量管理中的缓冲区越界读取漏洞分析
人工智能·aigc
iFlow_AI2 小时前
增强AI编程助手效能:使用开源Litho(deepwiki-rs)深度上下文赋能iFlow
人工智能·ai·ai编程·命令模式·iflow·iflow cli·心流ai助手