PyTorch官网demo解读——第一个神经网络(2)

上一篇:PyTorch官网demo解读------第一个神经网络(1)

继上一篇文章我们展示了第一个神经网络的完整代码,今天我们来聊聊这个神经网络的模型设计。

这个demo实际上只使用了一个简单的线性模型:y = wx + b;

手写数字识别最后其实只输出10个结果(0~9),所以我们可以将结果表示为包含十个数的一维矩阵 [10],矩阵中的每个值是预测的概率值,表示索引代表的数字的概率。

我们的图片是28*28=784像素的,我们用一维矩阵[784]来表示,所以我们的目标就是将784 => 10。因为这个demo中只使用了一层神经网络,于是我们将我们的权重参数设计成784x10的二维矩阵[784, 10],这样每张图片的像素值乘以权重矩阵就得出10个数的一维矩阵[10],再加上10个数的偏差值bias就是我们预测的结果了。是不是很简单:=))

每个权重参数其实就是一个神经元,那么我们总共只使用了7840个神经元,就可以识别数字了。

每个神经元执行的计算也很简单,就是进行了一次 y = wx + b 的函数运算,结果y再进行一次激活函数运算(log_softmax)

模型运行简化流程如下图:
对应demo中的关键代码:
python 复制代码
# 初始化权重和偏差值,权重是随机出来的784*10的矩阵,偏差初始化为0
weights = torch.randn(784, 10) / math.sqrt(784)
weights.requires_grad_()
bias = torch.zeros(10, requires_grad=True)

# 激活函数
def log_softmax(x):
    return x - x.exp().sum(-1).log().unsqueeze(-1)

# 定义模型:y = wx + b
# 实际上就是单层的Linear模型
def model(xb):
    return log_softmax(xb @ weights + bias)

ok,今天就先聊到这里吧!

原来数学如此的美,代码的尽头是数学?

相关推荐
linghuocaishui2 分钟前
京东用工平台实践:亲测案例复盘分享
人工智能·python
da_vinci_x3 分钟前
【2D场景】16:9秒变21:9?PS “液态缩放” + AI 补全,零成本适配全面屏
前端·人工智能·游戏·aigc·设计师·贴图·游戏美术
雍凉明月夜6 分钟前
深度学习网络笔记Ⅲ(注意力机制)
笔记·深度学习·神经网络·分类
算法狗29 分钟前
大模型面试题:大模型FFN中用SwiGLU为啥设置FFN的映射为8/3*d呢?
人工智能
humors22139 分钟前
四步生成喜欢的图片
人工智能·ai·图片·背景·祝福·头像
_codemonster44 分钟前
BERT和Transformer的双向性理解
人工智能·bert·transformer
十铭忘1 小时前
SAM2跟踪的理解19——位置编码
人工智能·深度学习·计算机视觉
张二娃同学1 小时前
深度学习入门篇——Github的使用和项目的导入
人工智能·git·深度学习·开源·github
一个处女座的程序猿O(∩_∩)O1 小时前
transformer模型:彻底改变AI格局的革命性架构
人工智能·深度学习·transformer
Damon小智1 小时前
【TextIn大模型加速器 + 火山引擎】跨国药企多语言手册智能翻译系统设计与实现
人工智能·ai·ocr·agent·火山引擎