PyTorch官网demo解读——第一个神经网络(2)

上一篇:PyTorch官网demo解读------第一个神经网络(1)

继上一篇文章我们展示了第一个神经网络的完整代码,今天我们来聊聊这个神经网络的模型设计。

这个demo实际上只使用了一个简单的线性模型:y = wx + b;

手写数字识别最后其实只输出10个结果(0~9),所以我们可以将结果表示为包含十个数的一维矩阵 [10],矩阵中的每个值是预测的概率值,表示索引代表的数字的概率。

我们的图片是28*28=784像素的,我们用一维矩阵[784]来表示,所以我们的目标就是将784 => 10。因为这个demo中只使用了一层神经网络,于是我们将我们的权重参数设计成784x10的二维矩阵[784, 10],这样每张图片的像素值乘以权重矩阵就得出10个数的一维矩阵[10],再加上10个数的偏差值bias就是我们预测的结果了。是不是很简单:=))

每个权重参数其实就是一个神经元,那么我们总共只使用了7840个神经元,就可以识别数字了。

每个神经元执行的计算也很简单,就是进行了一次 y = wx + b 的函数运算,结果y再进行一次激活函数运算(log_softmax)

模型运行简化流程如下图:
对应demo中的关键代码:
python 复制代码
# 初始化权重和偏差值,权重是随机出来的784*10的矩阵,偏差初始化为0
weights = torch.randn(784, 10) / math.sqrt(784)
weights.requires_grad_()
bias = torch.zeros(10, requires_grad=True)

# 激活函数
def log_softmax(x):
    return x - x.exp().sum(-1).log().unsqueeze(-1)

# 定义模型:y = wx + b
# 实际上就是单层的Linear模型
def model(xb):
    return log_softmax(xb @ weights + bias)

ok,今天就先聊到这里吧!

原来数学如此的美,代码的尽头是数学?

相关推荐
空中湖19 分钟前
tensorflow武林志第二卷第九章:玄功九转
人工智能·python·tensorflow
lishaoan7724 分钟前
使用tensorflow的线性回归的例子(七)
人工智能·tensorflow·线性回归
千宇宙航3 小时前
闲庭信步使用SV搭建图像测试平台:第三十一课——基于神经网络的手写数字识别
图像处理·人工智能·深度学习·神经网络·计算机视觉·fpga开发
IT古董3 小时前
【第二章:机器学习与神经网络概述】04.回归算法理论与实践 -(4)模型评价与调整(Model Evaluation & Tuning)
神经网络·机器学习·回归
onceco4 小时前
领域LLM九讲——第5讲 为什么选择OpenManus而不是QwenAgent(附LLM免费api邀请码)
人工智能·python·深度学习·语言模型·自然语言处理·自动化
jndingxin7 小时前
OpenCV CUDA模块设备层-----高效地计算两个 uint 类型值的带权重平均值
人工智能·opencv·计算机视觉
Sweet锦7 小时前
零基础保姆级本地化部署文心大模型4.5开源系列
人工智能·语言模型·文心一言
hie988948 小时前
MATLAB锂离子电池伪二维(P2D)模型实现
人工智能·算法·matlab
晨同学03278 小时前
opencv的颜色通道问题 & rgb & bgr
人工智能·opencv·计算机视觉
蓝婷儿8 小时前
Python 机器学习核心入门与实战进阶 Day 3 - 决策树 & 随机森林模型实战
人工智能·python·机器学习