开源语音识别faster-whisper部署教程

1. 资源下载

源码地址

模型下载地址:

markdown 复制代码
large-v3模型:https://huggingface.co/Systran/faster-whisper-large-v3/tree/main
large-v2模型:https://huggingface.co/guillaumekln/faster-whisper-large-v2/tree/main
large-v2模型:https://huggingface.co/guillaumekln/faster-whisper-large-v1/tree/main
medium模型:https://huggingface.co/guillaumekln/faster-whisper-medium/tree/main
small模型:https://huggingface.co/guillaumekln/faster-whisper-small/tree/main
base模型:https://huggingface.co/guillaumekln/faster-whisper-base/tree/main
tiny模型:https://huggingface.co/guillaumekln/faster-whisper-tiny/tree/main

下载cuBLAS and cuDNN

shell 复制代码
https://github.com/Purfview/whisper-standalone-win/releases/tag/libs

2. 创建环境

conda环境中创建python运行环境

shell 复制代码
conda create -n faster_whisper python=3.9 # python版本要求3.8到3.11

激活虚拟环境

shell 复制代码
conda activate faster_whisper

安装faster-whisper依赖

shell 复制代码
pip install faster-whisper

3. 运行

执行完以上步骤后,我们可以写代码了

python 复制代码
from faster_whisper import WhisperModel

model_size = "large-v3"

path = r"D:\Works\Python\Faster_Whisper\model\small"

# Run on GPU with FP16
model = WhisperModel(model_size_or_path=path, device="cuda", local_files_only=True)

# or run on GPU with INT8
# model = WhisperModel(model_size, device="cuda", compute_type="int8_float16")
# or run on CPU with INT8
# model = WhisperModel(model_size, device="cpu", compute_type="int8")

segments, info = model.transcribe("C:\\Users\\21316\\Documents\\录音\\test.wav", beam_size=5, language="zh", vad_filter=True, vad_parameters=dict(min_silence_duration_ms=1000))

print("Detected language '%s' with probability %f" % (info.language, info.language_probability))

for segment in segments:
    print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))

说明:

markdown 复制代码
local_files_only=True 表示加载本地模型
model_size_or_path=path 指定加载模型路径
device="cuda" 指定使用cuda
compute_type="int8_float16" 量化为8位
language="zh" 指定音频语言
vad_filter=True 开启vad
vad_parameters=dict(min_silence_duration_ms=1000) 设置vad参数

更多内容欢迎访问博客

对应视频内容欢迎访问视频

相关推荐
YSGZJJ3 分钟前
股指期货的套保策略如何精准选择和规避风险?
人工智能·区块链
无脑敲代码,bug漫天飞5 分钟前
COR 损失函数
人工智能·机器学习
幽兰的天空9 分钟前
Python 中的模式匹配:深入了解 match 语句
开发语言·python
HPC_fac130520678161 小时前
以科学计算为切入点:剖析英伟达服务器过热难题
服务器·人工智能·深度学习·机器学习·计算机视觉·数据挖掘·gpu算力
网易独家音乐人Mike Zhou4 小时前
【卡尔曼滤波】数据预测Prediction观测器的理论推导及应用 C语言、Python实现(Kalman Filter)
c语言·python·单片机·物联网·算法·嵌入式·iot
安静读书4 小时前
Python解析视频FPS(帧率)、分辨率信息
python·opencv·音视频
小陈phd4 小时前
OpenCV从入门到精通实战(九)——基于dlib的疲劳监测 ear计算
人工智能·opencv·计算机视觉
Guofu_Liao5 小时前
大语言模型---LoRA简介;LoRA的优势;LoRA训练步骤;总结
人工智能·语言模型·自然语言处理·矩阵·llama
小二·5 小时前
java基础面试题笔记(基础篇)
java·笔记·python
小喵要摸鱼7 小时前
Python 神经网络项目常用语法
python