【经典LeetCode算法题目专栏分类】【第5期】贪心算法:分发饼干、跳跃游戏、模拟行走机器人

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能AI、python、计算机视觉相关分享研究。

更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~

👍感谢小伙伴 们点赞、关注!

分发饼干

|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| class Solution : def findContentChildren****(**** self****,**** g****:**** List****[**** int ], s****:**** List****[**** int ]) -> int : # 贪心算法 res = 0 g****.**** sort****()**** s****.**** sort****()**** i = 0 j = 0 while i < len ( g****)**** and j < len ( s****):**** # 饼干满足胃口 if g****[**** i****]**** <= s****[**** j****]:**** res += 1 i += 1 j += 1 else : # 饼干不满足胃口,查找下一个饼干 j += 1 return res |

跳跃游戏

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| class Solution : def canJump****(**** self****,**** nums****:**** List****[**** int ]) -> bool : # 贪心算法 reach_index = len ( nums****)**** - 1 # 表示能够到达的索引位置 for i in range ( len ( nums****)-**** 1****,-**** 1****,-**** 1****):**** # 从后往前遍历,如果满足下述条件说明能够达到当前索引 if i + nums****[**** i****]**** >= reach_index****:**** reach_index = i return reach_index == 0 class Solution : def canJump****(**** self****,**** nums****:**** List****[**** int ]) -> bool : if nums == [ 0****]:**** return True maxDist = 0 # 能够达到的最远距离 end_index = len ( nums****)-**** 1 for i****,**** jump in enumerate ( nums****):**** # maxDist >= i表示能够达到当前索引位置,并且从当前索引开始 if maxDist >= i and i****+**** jump > maxDist****:**** maxDist = i****+**** jump if maxDist >= end_index****:**** return True return False |

跳跃游戏2

|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| class Solution : def jump****(**** self****,**** nums****:**** List****[**** int ]) -> int : end = 0 # end 表示当前能跳的边界 maxPosition = 0 steps = 0 for i in range ( len ( nums****)**** - 1****):**** # 找能跳的最远的 maxPosition = max ( maxPosition****,**** nums****[**** i****]**** + i****);**** if i == end****:**** #遇到边界,就更新边界,并且步数加一 end = maxPosition****;**** steps += 1 return steps****;**** |

模拟行走机器人

|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| class Solution : def robotSim****(**** self****,**** commands****:**** List****[**** int ], obstacles****:**** List****[**** List****[**** int ]]) -> int : if not commands****:**** return 0 # 索引0,1,2,3分别表示北,东,南,西 direx = [ 0****,**** 1****,**** 0****,**** - 1****]**** direy = [ 1****,**** 0****,**** - 1****,**** 0****]**** curx****,**** cury****,**** curdire****,**** ans = 0****,**** 0****,**** 0****,**** 0 com_len****,**** obs_len = len ( commands****),**** len ( obstacles****)**** obstacle_set = {( obstacles****[**** i****][**** 0****],**** obstacles****[**** i****][**** 1****])**** for i in range ( obs_len****)}**** # 变为集合,使判断是否有障碍物更快 for i in range ( com_len****):**** if commands****[**** i****]**** == - 1****:**** # 向右转90度 curdire = ( curdire + 1****)**** % 4 elif commands****[**** i****]**** == - 2****:**** # 向左转90度 curdire = ( curdire + 3****)**** % 4 else : # 1 <= x <= 9: 向前移动x个单位长度 for j in range ( commands****[**** i****]):**** # 试图走出一步,并判断是否遇到了障碍物 nx = curx + direx****[**** curdire****]**** ny = cury + direy****[**** curdire****]**** # 当前坐标不是障碍物,计算并存储的最大欧式距离的平方做比较 if ( nx****,**** ny****)**** not in obstacle_set****:**** curx = nx cury = ny ans = max ( ans****,**** curx********* curx + cury********* cury****)**** else : # 是障碍点,被挡住了,停留,智能等待下一个指令,那可以跳出当前指令了。 break return ans |

关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!
欢迎关注下方GZH:阿旭算法与机器学习,共同学习交流~

相关推荐
大数据追光猿6 小时前
Python应用算法之贪心算法理解和实践
大数据·开发语言·人工智能·python·深度学习·算法·贪心算法
Dream it possible!6 小时前
LeetCode 热题 100_在排序数组中查找元素的第一个和最后一个位置(65_34_中等_C++)(二分查找)(一次二分查找+挨个搜索;两次二分查找)
c++·算法·leetcode
夏末秋也凉6 小时前
力扣-回溯-46 全排列
数据结构·算法·leetcode
南宫生6 小时前
力扣每日一题【算法学习day.132】
java·学习·算法·leetcode
柠石榴6 小时前
【练习】【回溯No.1】力扣 77. 组合
c++·算法·leetcode·回溯
Leuanghing6 小时前
【Leetcode】11. 盛最多水的容器
python·算法·leetcode
qy发大财6 小时前
加油站(力扣134)
算法·leetcode·职场和发展
qy发大财6 小时前
柠檬水找零(力扣860)
算法·leetcode·职场和发展
不想编程小谭12 小时前
力扣LeetCode: 2506 统计相似字符串对的数目
c++·算法·leetcode
01_13 小时前
力扣hot100——LRU缓存(面试高频考题)
leetcode·缓存·面试·lru