Hadoop和Spark的区别

Hadoop

  • 表达能力有限。
  • 磁盘IO开销大,延迟度高。
  • 任务和任务之间的衔接涉及IO开销。
  • 前一个任务完成之前其他任务无法完成,难以胜任复杂、多阶段的计算任务。

Spark

  • Spark模型是对Mapreduce模型的改进,可以说没有HDFS、Mapreduce就没有Spark。

  • Spark可以使用Yarn作为他的资源管理器,并且可以处理HDFS数据。这对于已经部署了Hadoop集群的用户特别重要,因为他们不需要任何的数据迁移就可以使用到spark的强大功能了。

相关推荐
牛马程序员‍17 分钟前
云岚到家项目100问 v1.0
大数据·apache
撸码到无法自拔1 小时前
MATLAB中处理大数据的技巧与方法
大数据·开发语言·matlab
三月七(爱看动漫的程序员)2 小时前
Genetic Prompt Search via Exploiting Language Model Probabilities
大数据·人工智能·算法·语言模型·自然语言处理·prompt
forestsea3 小时前
【Elasticsearch】聚合分析:管道聚合
大数据·elasticsearch·搜索引擎
铭毅天下4 小时前
Elasticsearch 性能测试工具 Loadgen 之 001——部署及应用详解
大数据·测试工具·elasticsearch·搜索引擎·全文检索
喝醉酒的小白4 小时前
批量创建ES索引
大数据·elasticsearch·jenkins
一ge科研小菜鸡4 小时前
大数据治理实战指南:数据质量、合规与治理架构
大数据
STONE_KKK4 小时前
Hive详细讲解-概述与环境搭建
hive·hadoop·硬件架构
金融OG8 小时前
99.16 金融难点通俗解释:营业总收入
大数据·数据库·python·机器学习·金融
Elastic 中国社区官方博客13 小时前
使用 Confluent Cloud 的 Elasticsearch Connector 部署 Elastic Agent
大数据·数据库·elasticsearch·搜索引擎·全文检索·confluent