Hadoop和Spark的区别

Hadoop

  • 表达能力有限。
  • 磁盘IO开销大,延迟度高。
  • 任务和任务之间的衔接涉及IO开销。
  • 前一个任务完成之前其他任务无法完成,难以胜任复杂、多阶段的计算任务。

Spark

  • Spark模型是对Mapreduce模型的改进,可以说没有HDFS、Mapreduce就没有Spark。

  • Spark可以使用Yarn作为他的资源管理器,并且可以处理HDFS数据。这对于已经部署了Hadoop集群的用户特别重要,因为他们不需要任何的数据迁移就可以使用到spark的强大功能了。

相关推荐
华子w9089258591 小时前
基于 Python Django 和 Spark 的电力能耗数据分析系统设计与实现7000字论文实现
python·spark·django
用户Taobaoapi20141 小时前
母婴用品社媒种草效果量化:淘宝详情API+私域转化追踪案例
大数据·数据挖掘·数据分析
G皮T2 小时前
【Elasticsearch】检索排序 & 分页
大数据·elasticsearch·搜索引擎·排序·分页·检索·深度分页
无级程序员3 小时前
hive2服务启动报错:/tmp/hive on HDFS should be writable(不是chmod 777能解决的)
hive·hadoop·hdfs
小新学习屋5 小时前
Spark从入门到熟悉(篇三)
大数据·分布式·spark
rui锐rui6 小时前
大数据学习2:HIve
大数据·hive·学习
G皮T6 小时前
【Elasticsearch】检索高亮
大数据·elasticsearch·搜索引擎·全文检索·kibana·检索·高亮
zskj_zhyl10 小时前
智慧养老丨从依赖式养老到自主式养老:如何重构晚年生活新范式
大数据·人工智能·物联网
哲科软件11 小时前
从“电话催维修“到“手机看进度“——售后服务系统开发如何重构客户体验
大数据·智能手机·重构
zzywxc78711 小时前
AI 正在深度重构软件开发的底层逻辑和全生命周期,从技术演进、流程重构和未来趋势三个维度进行系统性分析
java·大数据·开发语言·人工智能·spring