深度学习14—注意力机制与自注意力机制

注:以下均为个人学习笔记,发布只为方便学习阅读,若觉侵权,请联系删除!!

1.李沐老师课堂学习理解笔记

1.1 随意线索和不随意线索

1.2 注意力机制

通过注意力池化层来有偏向性的选择某些输入。

1.3 注意力池化层

1.3.1 非参数化注意力机制

理解: Q(query)即为随意线索 ,可以通过对值V(value)做重要性加权得到。在这里,值V(value)和不随意线索K(key)是一个对。(对应关系)。

1.3.2 参数化的注意力机制

1.4 总结

1.5 代码

2.自注意机制(self-attention)

2.1 Q,K,V的理解

2.2 Attention(Q,K,V)

2.3 代码

2.4 位置编码

2.5 多头注意力机制

相关推荐
前端双越老师1 分钟前
30 行代码 langChain.js 开发你的第一个 Agent
人工智能·node.js·agent
东坡肘子17 分钟前
高温与奇怪的天象 | 肘子的 Swift 周报 #092
人工智能·swiftui·swift
KaneLogger35 分钟前
视频转文字,别再反复拖进度条了
前端·javascript·人工智能
度假的小鱼37 分钟前
从 “人工编码“ 到 “AI 协同“:大模型如何重塑软件开发的效率与范式
人工智能
zm-v-159304339862 小时前
ArcGIS 水文分析升级:基于深度学习的流域洪水演进过程模拟
人工智能·深度学习·arcgis
拓端研究室3 小时前
视频讲解|核密度估计朴素贝叶斯:业务数据分类—从理论到实践
人工智能·分类·数据挖掘
灵智工坊LingzhiAI3 小时前
人体坐姿检测系统项目教程(YOLO11+PyTorch+可视化)
人工智能·pytorch·python
昨日之日20063 小时前
Video Background Remover V3版 - AI视频一键抠像/视频换背景 支持50系显卡 一键整合包下载
人工智能·音视频
SHIPKING3934 小时前
【机器学习&深度学习】什么是下游任务模型?
人工智能·深度学习·机器学习
子燕若水8 小时前
Unreal Engine 5中的AI知识
人工智能