深度学习14—注意力机制与自注意力机制

注:以下均为个人学习笔记,发布只为方便学习阅读,若觉侵权,请联系删除!!

1.李沐老师课堂学习理解笔记

1.1 随意线索和不随意线索

1.2 注意力机制

通过注意力池化层来有偏向性的选择某些输入。

1.3 注意力池化层

1.3.1 非参数化注意力机制

理解: Q(query)即为随意线索 ,可以通过对值V(value)做重要性加权得到。在这里,值V(value)和不随意线索K(key)是一个对。(对应关系)。

1.3.2 参数化的注意力机制

1.4 总结

1.5 代码

2.自注意机制(self-attention)

2.1 Q,K,V的理解

2.2 Attention(Q,K,V)

2.3 代码

2.4 位置编码

2.5 多头注意力机制

相关推荐
yvestine20 分钟前
自然语言处理——文本表示
人工智能·python·算法·自然语言处理·文本表示
zzc92128 分钟前
MATLAB仿真生成无线通信网络拓扑推理数据集
开发语言·网络·数据库·人工智能·python·深度学习·matlab
点赋科技29 分钟前
沙市区举办资本市场赋能培训会 点赋科技分享智能消费新实践
大数据·人工智能
HeteroCat36 分钟前
一周年工作总结:做了一年的AI工作我都干了什么?
人工智能
编程有点难43 分钟前
Python训练打卡Day43
开发语言·python·深度学习
2301_805054561 小时前
Python训练营打卡Day48(2025.6.8)
pytorch·python·深度学习
YSGZJJ1 小时前
股指期货技术分析与短线操作方法介绍
大数据·人工智能
Guheyunyi1 小时前
监测预警系统重塑隧道安全新范式
大数据·运维·人工智能·科技·安全
码码哈哈爱分享1 小时前
[特殊字符] Whisper 模型介绍(OpenAI 语音识别系统)
人工智能·whisper·语音识别