深度学习14—注意力机制与自注意力机制

注:以下均为个人学习笔记,发布只为方便学习阅读,若觉侵权,请联系删除!!

1.李沐老师课堂学习理解笔记

1.1 随意线索和不随意线索

1.2 注意力机制

通过注意力池化层来有偏向性的选择某些输入。

1.3 注意力池化层

1.3.1 非参数化注意力机制

理解: Q(query)即为随意线索 ,可以通过对值V(value)做重要性加权得到。在这里,值V(value)和不随意线索K(key)是一个对。(对应关系)。

1.3.2 参数化的注意力机制

1.4 总结

1.5 代码

2.自注意机制(self-attention)

2.1 Q,K,V的理解

2.2 Attention(Q,K,V)

2.3 代码

2.4 位置编码

2.5 多头注意力机制

相关推荐
PPT百科3 分钟前
创建实用PPT演讲者备注的有效方法
人工智能·经验分享·pdf·powerpoint·ppt
lilu88888883 小时前
AI代码生成器赋能房地产:ScriptEcho如何革新VR/AR房产浏览体验
前端·人工智能·ar·vr
梦云澜3 小时前
论文阅读(十六):利用线性链条件随机场模型检测阵列比较基因组杂交数据的拷贝数变异
深度学习
好评笔记3 小时前
多模态论文笔记——VDT
论文阅读·深度学习·机器学习·大模型·aigc·transformer·面试八股
好评笔记3 小时前
多模态论文笔记——ViViT
论文阅读·深度学习·机器学习·计算机视觉·面试·aigc·transformer
梦云澜3 小时前
论文阅读(五):乳腺癌中的高斯图模型和扩展网络推理
论文阅读·人工智能·深度学习·学习
危险、4 小时前
Spring Boot 无缝集成SpringAI的函数调用模块
人工智能·spring boot·函数调用·springai
深度学习实战训练营5 小时前
基于迁移学习的ResNet50模型实现石榴病害数据集多分类图片预测
人工智能·分类·迁移学习
XianxinMao5 小时前
开源AI模型发布策略:平衡开放与质量的艺术
人工智能
Fxrain5 小时前
[Computer Vision]实验二:图像特征点提取
人工智能·计算机视觉