Graph2NLP浅谈

图技术

利用neo4j、networkx、dgl、python做图分析挖掘

【1】最短路径算法dijkstra
【2】基于networkx的隐性集团关系识别模型
【3】基于Neo4j的担保社群型态分析挖掘
【4】基于python求有向无环图中target到其他节点全路径
【5】有向图中任意两点的路径
【6】图基础入门
【7】知识图谱快速入门
【8】基于graphsage的欺诈用户风险识别


Graph2NLP浅谈

前言

主要是把图数据 转化为文本 的实践和尝试,后续应用于实际的业务场景中。图数据来源于基于graphsage的欺诈用户风险识别 中的graph.bin ,自然语言处理手段主要来源于基于word2vec的word相似度 中的word2vec


一、构图

使用一个小图,举例说明如何进行转换,下图包含6个节点与6条关系。
企业0 企业1 企业2 企业3 企业4 企业5

利用dgl进行构图,代码如下。

python 复制代码
import dgl
import torch
import numpy as np
import numpy
import os
from dgl.data import DGLDataset, save_graphs, load_graphs
graph = dgl.graph(([0, 1, 2, 3, 5, 2], [1, 2, 3, 4, 3, 0]))

二、Graph2NLP

利用dgl.sampling.random_walk构造图结构数据,搜索节点[0, 1, 2, 3, 4, 5]4度以内的路径。

python 复制代码
paths = dgl.sampling.random_walk(graph, [0, 1, 2, 3, 4, 5], length=4)
paths[0].numpy().tolist()
def text_save(filename, data):#filename为写入CSV文件的路径,data为要写入数据列表.
    if os.path.exists(filename):
        os.remove(filename)
    file = open(filename,'a')
    for i in range(len(data)):
        s = str(data[i]).replace('[','').replace(']','').replace('-1','')#去除[],这两行按数据不同,可以选择
        s = s.replace("'",'').replace(',','') +'\n'   #去除单引号,逗号,每行末尾追加换行符
        file.write(s)
    file.close()
    print("保存成功")
text_save('data.txt', paths[0].numpy().tolist())

data.txt文本数据里的内容如下

python 复制代码
0 1 2 0 1
1 2 3 4 
2 0 1 2 0
3 4   
4    
5 3 4  

三、分析节点相似度

利用word2vec 分析data.txt文本数据,得到节点相似度。

代码如下:

python 复制代码
#coding:utf-8
import jieba
from gensim.models import Word2Vec
import gensim.models.word2vec as w2v
with open('data.txt',encoding='gb18030') as f:
    document = f.read()
    document_cut = jieba.cut(document)
    result = ' '.join(document_cut)
    print("type",type(result))
    with open('data_seg.txt', 'w',encoding="utf-8") as f2:
        f2.write(result)
model_file_name = 'data.model'
#模型训练,生成词向量
sentences = w2v.LineSentence('data_seg.txt')
model = Word2Vec(sentences, vector_size=100, window=5, min_count=1, workers=4)
model.save(model_file_name)
model = Word2Vec.load(model_file_name)
for vec in ['0','1','2','3','4', '5']:
    print('--%s--的似度' %(vec))
    print(model.wv.similar_by_word(vec, topn=15))
    print('\n')

结果分析

python 复制代码
--0--的似度
[('5', 0.13149002194404602), ('2', 0.0679759532213211), ('1', -0.013514956459403038), ('3', -0.04461709409952164), ('4', -0.11167057603597641)]

节点0与节点5、2的相似度较高。后续该idea考虑应用于实际业务场景中,分享应用案例。

相关推荐
GitCode官方12 分钟前
面壁智能入驻 GitCode:端侧 AI 开发获全新生产力引擎
人工智能·gitcode
拓端研究室27 分钟前
专题:2025AI时代的医疗保健业:应用与行业趋势研究报告|附130+份报告PDF、数据、可视化模板汇总下载
大数据·人工智能
咋吃都不胖lyh29 分钟前
激活函数是什么,神经网络中为什么要有激活函数
人工智能·深度学习·神经网络·激活函数
Ma04071332 分钟前
【论文阅读15】-DiagLLM:基于大型语言模型的多模态推理,用于可解释的轴承故障诊断
人工智能·语言模型·自然语言处理
老前端的功夫34 分钟前
Vue2中key的深度解析:Diff算法的性能优化之道
前端·javascript·vue.js·算法·性能优化
芯盾时代38 分钟前
《网络安全法》完成修改,AI安全正式“入法”
人工智能·安全·web安全
啥都鼓捣的小yao41 分钟前
一、什么是语言模型?
人工智能·语言模型·自然语言处理
行板Andante1 小时前
AttributeError: ‘super‘ object has no attribute ‘sklearn_tags‘解决
人工智能·python·sklearn
kaikaile19951 小时前
基于MATLAB的传统插值法实现超分辨率重建
人工智能·matlab·超分辨率重建
集成显卡1 小时前
AI取名大师 | PM2 部署 Bun.js 应用及配置 Let‘s Encrypt 免费 HTTPS 证书
开发语言·javascript·人工智能