Graph2NLP浅谈

图技术

利用neo4j、networkx、dgl、python做图分析挖掘

【1】最短路径算法dijkstra
【2】基于networkx的隐性集团关系识别模型
【3】基于Neo4j的担保社群型态分析挖掘
【4】基于python求有向无环图中target到其他节点全路径
【5】有向图中任意两点的路径
【6】图基础入门
【7】知识图谱快速入门
【8】基于graphsage的欺诈用户风险识别


Graph2NLP浅谈

前言

主要是把图数据 转化为文本 的实践和尝试,后续应用于实际的业务场景中。图数据来源于基于graphsage的欺诈用户风险识别 中的graph.bin ,自然语言处理手段主要来源于基于word2vec的word相似度 中的word2vec


一、构图

使用一个小图,举例说明如何进行转换,下图包含6个节点与6条关系。
企业0 企业1 企业2 企业3 企业4 企业5

利用dgl进行构图,代码如下。

python 复制代码
import dgl
import torch
import numpy as np
import numpy
import os
from dgl.data import DGLDataset, save_graphs, load_graphs
graph = dgl.graph(([0, 1, 2, 3, 5, 2], [1, 2, 3, 4, 3, 0]))

二、Graph2NLP

利用dgl.sampling.random_walk构造图结构数据,搜索节点[0, 1, 2, 3, 4, 5]4度以内的路径。

python 复制代码
paths = dgl.sampling.random_walk(graph, [0, 1, 2, 3, 4, 5], length=4)
paths[0].numpy().tolist()
def text_save(filename, data):#filename为写入CSV文件的路径,data为要写入数据列表.
    if os.path.exists(filename):
        os.remove(filename)
    file = open(filename,'a')
    for i in range(len(data)):
        s = str(data[i]).replace('[','').replace(']','').replace('-1','')#去除[],这两行按数据不同,可以选择
        s = s.replace("'",'').replace(',','') +'\n'   #去除单引号,逗号,每行末尾追加换行符
        file.write(s)
    file.close()
    print("保存成功")
text_save('data.txt', paths[0].numpy().tolist())

data.txt文本数据里的内容如下

python 复制代码
0 1 2 0 1
1 2 3 4 
2 0 1 2 0
3 4   
4    
5 3 4  

三、分析节点相似度

利用word2vec 分析data.txt文本数据,得到节点相似度。

代码如下:

python 复制代码
#coding:utf-8
import jieba
from gensim.models import Word2Vec
import gensim.models.word2vec as w2v
with open('data.txt',encoding='gb18030') as f:
    document = f.read()
    document_cut = jieba.cut(document)
    result = ' '.join(document_cut)
    print("type",type(result))
    with open('data_seg.txt', 'w',encoding="utf-8") as f2:
        f2.write(result)
model_file_name = 'data.model'
#模型训练,生成词向量
sentences = w2v.LineSentence('data_seg.txt')
model = Word2Vec(sentences, vector_size=100, window=5, min_count=1, workers=4)
model.save(model_file_name)
model = Word2Vec.load(model_file_name)
for vec in ['0','1','2','3','4', '5']:
    print('--%s--的似度' %(vec))
    print(model.wv.similar_by_word(vec, topn=15))
    print('\n')

结果分析

python 复制代码
--0--的似度
[('5', 0.13149002194404602), ('2', 0.0679759532213211), ('1', -0.013514956459403038), ('3', -0.04461709409952164), ('4', -0.11167057603597641)]

节点0与节点5、2的相似度较高。后续该idea考虑应用于实际业务场景中,分享应用案例。

相关推荐
视觉震撼1 分钟前
逐步指南:为大模型构建自动化知识图谱
运维·自动化·知识图谱
梦想是成为算法高手1 分钟前
带你从入门到精通——知识图谱(一. 知识图谱入门)
人工智能·pytorch·python·深度学习·神经网络·知识图谱
阿也在北京4 分钟前
基于Neo4j和TuGraph的知识图谱与问答系统搭建——胡歌的导演演员人际圈
python·阿里云·知识图谱·neo4j
计算机徐师兄6 分钟前
Python基于知识图谱的胆囊炎医疗问答系统(附源码,文档说明)
python·知识图谱·胆囊炎医疗问答系统·python胆囊炎医疗问答系统·知识图谱的胆囊炎医疗问答系统·python知识图谱·医疗问答系统
北冥码鲲6 分钟前
【保姆级教程】从零入手:Python + Neo4j 构建你的第一个知识图谱
python·知识图谱·neo4j
沛沛老爹8 分钟前
从Web到AI:行业专属Agent Skills生态系统技术演进实战
java·开发语言·前端·vue.js·人工智能·rag·企业转型
B站计算机毕业设计超人8 分钟前
计算机毕业设计Python+大模型音乐推荐系统 音乐数据分析 音乐可视化 音乐爬虫 知识图谱 大数据毕业设计
人工智能·hadoop·爬虫·python·数据分析·知识图谱·课程设计
陈天伟教授20 分钟前
人工智能应用-机器视觉:AI 鉴伪 02.虚假人脸生成
人工智能·神经网络·数码相机·生成对抗网络·dnn
可能是阿伦27 分钟前
探索 cccc:一个面向工程协作的多代理协作内核
人工智能·低代码·ai·web3