Graph2NLP浅谈

图技术

利用neo4j、networkx、dgl、python做图分析挖掘

【1】最短路径算法dijkstra
【2】基于networkx的隐性集团关系识别模型
【3】基于Neo4j的担保社群型态分析挖掘
【4】基于python求有向无环图中target到其他节点全路径
【5】有向图中任意两点的路径
【6】图基础入门
【7】知识图谱快速入门
【8】基于graphsage的欺诈用户风险识别


Graph2NLP浅谈

前言

主要是把图数据 转化为文本 的实践和尝试,后续应用于实际的业务场景中。图数据来源于基于graphsage的欺诈用户风险识别 中的graph.bin ,自然语言处理手段主要来源于基于word2vec的word相似度 中的word2vec


一、构图

使用一个小图,举例说明如何进行转换,下图包含6个节点与6条关系。
企业0 企业1 企业2 企业3 企业4 企业5

利用dgl进行构图,代码如下。

python 复制代码
import dgl
import torch
import numpy as np
import numpy
import os
from dgl.data import DGLDataset, save_graphs, load_graphs
graph = dgl.graph(([0, 1, 2, 3, 5, 2], [1, 2, 3, 4, 3, 0]))

二、Graph2NLP

利用dgl.sampling.random_walk构造图结构数据,搜索节点[0, 1, 2, 3, 4, 5]4度以内的路径。

python 复制代码
paths = dgl.sampling.random_walk(graph, [0, 1, 2, 3, 4, 5], length=4)
paths[0].numpy().tolist()
def text_save(filename, data):#filename为写入CSV文件的路径,data为要写入数据列表.
    if os.path.exists(filename):
        os.remove(filename)
    file = open(filename,'a')
    for i in range(len(data)):
        s = str(data[i]).replace('[','').replace(']','').replace('-1','')#去除[],这两行按数据不同,可以选择
        s = s.replace("'",'').replace(',','') +'\n'   #去除单引号,逗号,每行末尾追加换行符
        file.write(s)
    file.close()
    print("保存成功")
text_save('data.txt', paths[0].numpy().tolist())

data.txt文本数据里的内容如下

python 复制代码
0 1 2 0 1
1 2 3 4 
2 0 1 2 0
3 4   
4    
5 3 4  

三、分析节点相似度

利用word2vec 分析data.txt文本数据,得到节点相似度。

代码如下:

python 复制代码
#coding:utf-8
import jieba
from gensim.models import Word2Vec
import gensim.models.word2vec as w2v
with open('data.txt',encoding='gb18030') as f:
    document = f.read()
    document_cut = jieba.cut(document)
    result = ' '.join(document_cut)
    print("type",type(result))
    with open('data_seg.txt', 'w',encoding="utf-8") as f2:
        f2.write(result)
model_file_name = 'data.model'
#模型训练,生成词向量
sentences = w2v.LineSentence('data_seg.txt')
model = Word2Vec(sentences, vector_size=100, window=5, min_count=1, workers=4)
model.save(model_file_name)
model = Word2Vec.load(model_file_name)
for vec in ['0','1','2','3','4', '5']:
    print('--%s--的似度' %(vec))
    print(model.wv.similar_by_word(vec, topn=15))
    print('\n')

结果分析

python 复制代码
--0--的似度
[('5', 0.13149002194404602), ('2', 0.0679759532213211), ('1', -0.013514956459403038), ('3', -0.04461709409952164), ('4', -0.11167057603597641)]

节点0与节点5、2的相似度较高。后续该idea考虑应用于实际业务场景中,分享应用案例。

相关推荐
liliangcsdn1 分钟前
全期望公式在DDIM中的应用实例
算法·机器学习·概率论
救救孩子把2 分钟前
0-机器学习与大模型开发数学教程
人工智能·数学·机器学习
TonyLee0175 分钟前
RNN类神经网络整理
人工智能·rnn·神经网络
三万棵雪松5 分钟前
【AI小智后端部分(五)】
数据库·人工智能·python·语音处理·ai小智
橙露5 分钟前
视觉检测核心定位算法全解析:优缺点对比与场景选型指南
人工智能·算法·视觉检测
Hcoco_me8 分钟前
大模型面试题28:推导transformer layer的计算复杂度
人工智能·深度学习·学习·自然语言处理·transformer·word2vec
kimi-22210 分钟前
大模型推理model.generate()+tokenizer.decode() 、model(**input)
人工智能·深度学习
qunaa010113 分钟前
木材缺陷检测与分类系统_基于FreeAnchor R50 FPN模型实现
人工智能·分类·数据挖掘
祁思妙想14 分钟前
机器学习算法入门------概念及发展史/核心概念及组件/分类算法实战
人工智能·机器学习
csuzhucong14 分钟前
三明治魔方、凹凸魔方、小红帽魔方
算法