【提示工程】Chain-of-Thought Prompting Elicits Reasoning in Large Language Models

解决问题

探索大语言模型解决推理问题的能力。从头训练或微调模型,需要创建大量的高质量含中间步骤的数据集,成本过大。

相关工作

1、使用中间步骤来解决推理问题

(1)使用自然语言通过一系列中间步骤解决数学应用题

(2)通过创建更大的数据集微调语言模型,而不是从头训练

(3)使用语言模型一行一行的预测中间结果预测最终输出

2、采用提示方式

(1)少样本提示

(2)自动学习提示

(3)描述任务的模型指令

本文采用一系列思维来增强语言模型的输出

创新方法

采用由自然语言描述逻辑推理过程 ,构建成一条解决问题步骤的思维链,以Prompt的形式进行few-shot提示。

可采用COT的条件

COT对满足以下三个条件的任务会有帮助:

(1)需要完成具有挑战性的多步推理任务

(2)需要用到大语言模型

(3)缩放曲线相对平滑

缺少上述任意一个条件,都可能会影响性能。

优势

(1)可将问题拆解为多个步骤解决

(2)提供可解释性,便于调试

(3)应用任务领域广

(4)加入少量示例就可以引出COT

(5)few-shot中示例不需要与测试示例来自同一个样本分布

(6)示例顺序对性能影响较小,具有一定的鲁棒性

(7)最开始增加样例数量时候,对性能提升有帮助,达到一定数量后继续增加样例数量对性能改善较小

结论

我们探索了思维链提示作为一个简单且广泛适用的方法来增强语言模型的推理。通过算术推理、符号推理和常识推理的实验,我们发现思维链推理是模型尺度的一种新特性,它允许足够大的语言模型执行原本为平坦尺度曲线的推理任务。扩大语言模型可以执行的推理任务的范围将有望激发基于语言推理方法的进一步工作。

相关推荐
xier_ran11 分钟前
关键词解释:对比学习(Contrastive Learning)
人工智能·深度学习·学习·机器学习·对比学习
Jay200211124 分钟前
【机器学习】27 异常检测(密度估计)
人工智能·机器学习
ziwu30 分钟前
【岩石种类识别系统】Python+TensorFlow+Django+人工智能+深度学习+卷积神经网络算法
人工智能·深度学习·图像识别
AI即插即用37 分钟前
即插即用系列 | CVPR SwiftFormer:移动端推理新王者!0.8ms 延迟下 ImageNet 78.5% 准确率,吊打 MobileViT
图像处理·人工智能·深度学习·目标检测·计算机视觉·cnn·视觉检测
得贤招聘官1 小时前
AI招聘:HR领域的智能化变革与行业趋势
人工智能
ziwu1 小时前
【中草药识别系统】Python+TensorFlow+Django+人工智能+深度学习+卷积神经网络算法
人工智能·深度学习·图像识别
c#上位机2 小时前
halcon图像去噪—导向滤波
图像处理·人工智能·计算机视觉·c#·halcon
行云流水20002 小时前
青少年编程学习:考级与竞赛结合提升能力的方法
人工智能·学习·青少年编程
Blossom.1182 小时前
基于多智能体强化学习的云资源调度系统:如何用MARL把ECS成本打下来60%
人工智能·python·学习·决策树·机器学习·stable diffusion·音视频
Coding茶水间2 小时前
基于深度学习的苹果病害检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉