复杂背景下的低空无人机检测与跟踪算法

doi:10.11884/HPLPB202335.230026

  1. 大视场中的目标丢失后需要再次检测,但是大视场的检测比较耗时。但是根据实验发现丢失目标通常发生在无人机运动区域的320x320范围内,所以设计辅助网络,当目标丢失后,以320x320区域图像作为输入,使用辅助网络进行目标检测,加快了检测速度。

  2. 主网络因为负责大视场的检测,其优化目标为对小目标的检测。主网络的输入尺寸为1024x1024。在SPPF前添加SE注意力;在预测部分增加小目标检测层提高小目标检测效果;设计特征图融合提高对8x8目标的检测。

  3. 辅助网络用于在丢失点附近区域快速检测再次出目标,所以输入图像是实验总结出来的320x320,其优化目标为快。使用GhostNet替换大参数量的C3结构;去除了40x40的特征图;

    特征图分辨率 最小检测目标(其映射到特征图至少需要1个像素点表示)
    320x320 -
    40x40 8x8,及以上
    20x20 16x16,及以上

    根据文中描述,无人机尺寸都在16x16以上,所以40x40检测8x8~16x16部分的没有使用到,而16x16以上的也可以从其他特征图被解码出来,所以其功能重合了,为追求速度舍去了40x40的特征图分支。

    当然以上的前提是基于其映射到特征图至少需要1个像素点表示这样的认知,否则其信息就会没淹没在该特征图的背景中,不利于解码。

  4. 优化CSRT算法。该算法使用HOG特征进行匹配,而HOG中涉及金字塔算法,所以借助GPU并行能力进行速度优化。

  5. 特征点(打击点)提取算法:(a)起火时有非常明亮的光斑,直接二值化质心提取;(b)捕获时,OTSU二值化-先开后闭(去噪)-拉普拉斯边缘检测得到轮廓-求轮廓质心

值得借鉴的是:1)大小分辨率捕获模式,兼顾速度和性能;2)特征点的提取方法(虽然能够想到,但是看到大家都这么干证明该方法可行)。

相关推荐
TTGGGFF1 小时前
控制系统建模仿真(四):线性控制系统的数学模型
人工智能·算法
晚风吹长发2 小时前
初步了解Linux中的命名管道及简单应用和简单日志
linux·运维·服务器·开发语言·数据结构·c++·算法
Σίσυφος19002 小时前
Halcon中霍夫直线案例
算法
Anastasiozzzz3 小时前
leetcode力扣hot100困难题--4.俩个正序数列的中位数
java·算法·leetcode·面试·职场和发展
BHXDML3 小时前
第六章:推荐算法
算法·机器学习·推荐算法
Tisfy3 小时前
LeetCode 3510.移除最小数对使数组有序 II:有序集合
算法·leetcode·题解·设计·有序集合
汉克老师4 小时前
GESP2025年9月认证C++五级真题与解析(单选题9-15)
c++·算法·贪心算法·排序算法·归并排序·gesp5级·gesp五级
lihao lihao4 小时前
c++红黑树
算法
Sarvartha4 小时前
递推与递归笔记
算法
TracyCoder1235 小时前
LeetCode Hot100(1/100)——1. 两数之和 (Two Sum)
算法·leetcode