Win11极速安装Tensorflow-gpu+CUDA+cudnn

文章目录

不要使用官网版本,直接使用conda版本,有对应的包,安装很方便

0.pip/conda换默认源

为了高效下载,建议先把默认源换了,很简单这里不再赘述。(我用梯子,所以没换源😋)


cudnn7.6.0 + cuda10.1.168 +tensorflow-gpu2.3.0

1.Anaconda+python虚拟环境

如果你需要用到tensorflow了那我相信你一定会用Anaconda,Anaconda的安装不再赘述。只是提个醒,如果你第一次用conda create -n创建环境那么路径一定在C盘,而换默认路径一定是可以设置的,这里也不再展开

创建TensorFlow环境:(tf是环境名字,尽量取短点吧,要不然以后手都输麻)

python 复制代码
conda create -n tf python=3.9

2.安装CUDA以及cudnn

找到NVIDIA控制面板->帮助->系统信息->组件看一下CUDA版本,我的12.0是目前最新的,一般向下兼容

先试试cudatoolkit11.3.1和cudnn8.2.1

python 复制代码
conda search cuda


测试tensorflow的GPU版本安装成功的办法

python 复制代码
import tensorflow as tf

print('GPU',tf.test.is_gpu_available())

a = tf.constant(2.)
b = tf.constant(4.)

print(a * b)

运行结果

python 复制代码
D:\python\python.exe E:/pycharm_project2019/forward/test_gpu.py
2019-09-21 18:03:09.167168: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_100.dll
2019-09-21 18:03:12.435151: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2019-09-21 18:03:12.439660: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library nvcuda.dll
2019-09-21 18:03:12.809533: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties: 
name: GeForce 940M major: 5 minor: 0 memoryClockRate(GHz): 0.98
pciBusID: 0000:04:00.0
2019-09-21 18:03:12.809793: I tensorflow/stream_executor/platform/default/dlopen_checker_stub.cc:25] GPU libraries are statically linked, skip dlopen check.
2019-09-21 18:03:12.814170: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2019-09-21 18:03:24.691808: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-09-21 18:03:24.692136: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165]      0 
2019-09-21 18:03:24.692327: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0:   N 
2019-09-21 18:03:24.785375: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/device:GPU:0 with 514 MB memory) -> physical GPU (device: 0, name: GeForce 940M, pci bus id: 0000:04:00.0, compute capability: 5.0)
GPU True
2019-09-21 18:03:24.909917: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties: 
name: GeForce 940M major: 5 minor: 0 memoryClockRate(GHz): 0.98
pciBusID: 0000:04:00.0
2019-09-21 18:03:24.910666: I tensorflow/stream_executor/platform/default/dlopen_checker_stub.cc:25] GPU libraries are statically linked, skip dlopen check.
2019-09-21 18:03:24.927035: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2019-09-21 18:03:24.963911: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties: 
name: GeForce 940M major: 5 minor: 0 memoryClockRate(GHz): 0.98
pciBusID: 0000:04:00.0
2019-09-21 18:03:24.964226: I tensorflow/stream_executor/platform/default/dlopen_checker_stub.cc:25] GPU libraries are statically linked, skip dlopen check.
2019-09-21 18:03:24.968809: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2019-09-21 18:03:24.969307: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-09-21 18:03:24.969515: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165]      0 
2019-09-21 18:03:24.969647: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0:   N 
2019-09-21 18:03:24.974380: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 514 MB memory) -> physical GPU (device: 0, name: GeForce 940M, pci bus id: 0000:04:00.0, compute capability: 5.0)
tf.Tensor(8.0, shape=(), dtype=float32)

Process finished with exit code 0

显示"GPU True",即代表GPU版本安装成功!

参考文献

[1] Tensorflow与Python、CUDA、cuDNN的版本对应表 2023.10;

[2] Anaconda环境下Tensorflow的安装与卸载 2020.11;

[3] conda 安装指定版本tensorflow cpu/gpu 2019.12;

[4] Tensorflow-gpu保姆级安装教程(Win11, Anaconda3,Python3.9)2023.3;

[5] 在 Windows 环境中从源代码构建

[6] 十分钟安装Tensorflow-gpu2.6.0+本机CUDA12 以及numpy+matplotlib各包版本协调问题 2023.10;

相关推荐
张小生1802 分钟前
PyCharm中 argparse 库 的使用方法
python·pycharm
秃头佛爷2 分钟前
Python使用PDF相关组件案例详解
python
Dxy12393102163 分钟前
python下载pdf
数据库·python·pdf
叶知安5 分钟前
如何用pycharm连接sagemath?
ide·python·pycharm
weixin_432702268 分钟前
代码随想录算法训练营第五十五天|图论理论基础
数据结构·python·算法·深度优先·图论
BSV区块链9 分钟前
如何在BSV区块链上实现可验证AI
人工智能·区块链
菜鸟清风15 分钟前
ChromeDriver下载地址
python
武子康26 分钟前
大数据-212 数据挖掘 机器学习理论 - 无监督学习算法 KMeans 基本原理 簇内误差平方和
大数据·人工智能·学习·算法·机器学习·数据挖掘
deephub27 分钟前
Tokenformer:基于参数标记化的高效可扩展Transformer架构
人工智能·python·深度学习·架构·transformer
Q81375746033 分钟前
数据挖掘在金融交易中的应用:民锋科技的智能化布局
人工智能·科技·数据挖掘