Win11极速安装Tensorflow-gpu+CUDA+cudnn

文章目录

不要使用官网版本,直接使用conda版本,有对应的包,安装很方便

0.pip/conda换默认源

为了高效下载,建议先把默认源换了,很简单这里不再赘述。(我用梯子,所以没换源😋)


cudnn7.6.0 + cuda10.1.168 +tensorflow-gpu2.3.0

1.Anaconda+python虚拟环境

如果你需要用到tensorflow了那我相信你一定会用Anaconda,Anaconda的安装不再赘述。只是提个醒,如果你第一次用conda create -n创建环境那么路径一定在C盘,而换默认路径一定是可以设置的,这里也不再展开

创建TensorFlow环境:(tf是环境名字,尽量取短点吧,要不然以后手都输麻)

python 复制代码
conda create -n tf python=3.9

2.安装CUDA以及cudnn

找到NVIDIA控制面板->帮助->系统信息->组件看一下CUDA版本,我的12.0是目前最新的,一般向下兼容

先试试cudatoolkit11.3.1和cudnn8.2.1

python 复制代码
conda search cuda


测试tensorflow的GPU版本安装成功的办法

python 复制代码
import tensorflow as tf

print('GPU',tf.test.is_gpu_available())

a = tf.constant(2.)
b = tf.constant(4.)

print(a * b)

运行结果

python 复制代码
D:\python\python.exe E:/pycharm_project2019/forward/test_gpu.py
2019-09-21 18:03:09.167168: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_100.dll
2019-09-21 18:03:12.435151: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2019-09-21 18:03:12.439660: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library nvcuda.dll
2019-09-21 18:03:12.809533: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties: 
name: GeForce 940M major: 5 minor: 0 memoryClockRate(GHz): 0.98
pciBusID: 0000:04:00.0
2019-09-21 18:03:12.809793: I tensorflow/stream_executor/platform/default/dlopen_checker_stub.cc:25] GPU libraries are statically linked, skip dlopen check.
2019-09-21 18:03:12.814170: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2019-09-21 18:03:24.691808: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-09-21 18:03:24.692136: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165]      0 
2019-09-21 18:03:24.692327: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0:   N 
2019-09-21 18:03:24.785375: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/device:GPU:0 with 514 MB memory) -> physical GPU (device: 0, name: GeForce 940M, pci bus id: 0000:04:00.0, compute capability: 5.0)
GPU True
2019-09-21 18:03:24.909917: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties: 
name: GeForce 940M major: 5 minor: 0 memoryClockRate(GHz): 0.98
pciBusID: 0000:04:00.0
2019-09-21 18:03:24.910666: I tensorflow/stream_executor/platform/default/dlopen_checker_stub.cc:25] GPU libraries are statically linked, skip dlopen check.
2019-09-21 18:03:24.927035: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2019-09-21 18:03:24.963911: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties: 
name: GeForce 940M major: 5 minor: 0 memoryClockRate(GHz): 0.98
pciBusID: 0000:04:00.0
2019-09-21 18:03:24.964226: I tensorflow/stream_executor/platform/default/dlopen_checker_stub.cc:25] GPU libraries are statically linked, skip dlopen check.
2019-09-21 18:03:24.968809: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0
2019-09-21 18:03:24.969307: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-09-21 18:03:24.969515: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165]      0 
2019-09-21 18:03:24.969647: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0:   N 
2019-09-21 18:03:24.974380: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 514 MB memory) -> physical GPU (device: 0, name: GeForce 940M, pci bus id: 0000:04:00.0, compute capability: 5.0)
tf.Tensor(8.0, shape=(), dtype=float32)

Process finished with exit code 0

显示"GPU True",即代表GPU版本安装成功!

参考文献

[1] Tensorflow与Python、CUDA、cuDNN的版本对应表 2023.10;

[2] Anaconda环境下Tensorflow的安装与卸载 2020.11;

[3] conda 安装指定版本tensorflow cpu/gpu 2019.12;

[4] Tensorflow-gpu保姆级安装教程(Win11, Anaconda3,Python3.9)2023.3;

[5] 在 Windows 环境中从源代码构建

[6] 十分钟安装Tensorflow-gpu2.6.0+本机CUDA12 以及numpy+matplotlib各包版本协调问题 2023.10;

相关推荐
Jaly_W2 分钟前
用于航空发动机故障诊断的深度分层排序网络
人工智能·深度学习·故障诊断·航空发动机
CodeClimb3 分钟前
【华为OD-E卷-木板 100分(python、java、c++、js、c)】
java·javascript·c++·python·华为od
小嗷犬4 分钟前
【论文笔记】Cross-lingual few-shot sign language recognition
论文阅读·人工智能·多模态·少样本·手语翻译
夜幕龙11 分钟前
iDP3复现代码数据预处理全流程(二)——vis_dataset.py
人工智能·python·机器人
吃个糖糖28 分钟前
36 Opencv SURF 关键点检测
人工智能·opencv·计算机视觉
AI慧聚堂40 分钟前
自动化 + 人工智能:投标行业的未来是什么样的?
运维·人工智能·自动化
盛世隐者41 分钟前
【pytorch】循环神经网络
人工智能·pytorch
晚夜微雨问海棠呀44 分钟前
长沙景区数据分析项目实现
开发语言·python·信息可视化
cdut_suye1 小时前
Linux工具使用指南:从apt管理、gcc编译到makefile构建与gdb调试
java·linux·运维·服务器·c++·人工智能·python
开发者每周简报1 小时前
微软的AI转型故事
人工智能·microsoft