支持向量机 支持向量机概述

支持向量机概述

支持向量机 Support Vector MachineSVM ) 是一类按监督学习 ( supervisedlearning)方式对数据进行二元分类的广义线性分类器 (generalized linear classifier) ,其决策边界是对学习样本求解的最大边距超亚面 (maximum-margin hyperplane)与逻辑回归和神经网终相比,支持向量机,在学习复杂的非线性方程时提供了一种更为清晰,更加强大的方式

硬间隔、软间隔和非线性 SVM

假如数据是完全的线性可分的,那么学习到的模型可以称为硬间隔支持向量机。换个说法,硬间隔指的就是完全分类准确,不能存在分类错误的情况。软间隔,就是允许一定量的样本分类错误。

算法思想

找到集合边缘上的若工数据 (称为支持向量 (Support Vector) )用这些点找出一个平面(称为决策面),使得支持向量到该平面的距离最大

超平面方程:
w ⋅ x + b = 0 \mathbf{w} \cdot \mathbf{x} + b = 0 w⋅x+b=0

间隔(Margin):
Margin = 2 ∥ w ∥ \text{Margin} = \frac{2}{\|\mathbf{w}\|} Margin=∥w∥2

决策函数:
( w ⋅ x + b ) / ∣ ∣ w ∣ ∣ > = d , y = 1 (\mathbf{w} \cdot \mathbf{x} + b ) /||w|| >=d ,y=1 (w⋅x+b)/∣∣w∣∣>=d,y=1
( w ⋅ x + b ) / ∣ ∣ w ∣ ∣ > = d , y = − 1 (\mathbf{w} \cdot \mathbf{x} + b ) /||w|| >=d ,y=-1 (w⋅x+b)/∣∣w∣∣>=d,y=−1

如图所示,根据支持向量的定义我们知道,支持向量到超平面的距离为 d,其他点到超平面的距离大于 d

至此可以得到最大间隔超平面的上下两个超平面:
d = ∣ w ⋅ x + b ∣ / ∣ ∣ w ∣ ∣ d=|\mathbf{w} \cdot \mathbf{x} + b | /||w|| d=∣w⋅x+b∣/∣∣w∣∣

相关推荐
LNTON羚通11 分钟前
摄像机视频分析软件下载LiteAIServer视频智能分析平台玩手机打电话检测算法技术的实现
算法·目标检测·音视频·监控·视频监控
哭泣的眼泪4082 小时前
解析粗糙度仪在工业制造及材料科学和建筑工程领域的重要性
python·算法·django·virtualenv·pygame
IT古董2 小时前
【机器学习】机器学习中用到的高等数学知识-8. 图论 (Graph Theory)
人工智能·机器学习·图论
Microsoft Word2 小时前
c++基础语法
开发语言·c++·算法
天才在此3 小时前
汽车加油行驶问题-动态规划算法(已在洛谷AC)
算法·动态规划
莫叫石榴姐3 小时前
数据科学与SQL:组距分组分析 | 区间分布问题
大数据·人工智能·sql·深度学习·算法·机器学习·数据挖掘
ChaseDreamRunner4 小时前
迁移学习理论与应用
人工智能·机器学习·迁移学习
茶猫_4 小时前
力扣面试题 - 25 二进制数转字符串
c语言·算法·leetcode·职场和发展
谢眠6 小时前
深度学习day3-自动微分
python·深度学习·机器学习
搏博6 小时前
神经网络问题之一:梯度消失(Vanishing Gradient)
人工智能·机器学习