数据可视化---离群值展示

内容导航

类别 内容导航
机器学习 机器学习算法应用场景与评价指标
机器学习算法---分类
机器学习算法---回归
机器学习算法---聚类
机器学习算法---异常检测
机器学习算法---时间序列
数据可视化 数据可视化---折线图
数据可视化---箱线图
数据可视化---柱状图
数据可视化---饼图、环形图、雷达图
统计学检验 箱线图筛选异常值
3 Sigma原则筛选离群值
Python统计学检验
大数据 PySpark大数据处理详细教程
使用教程 CentOS服务器搭建Miniconda环境
Linux服务器配置免密SSH
大数据集群缓存清理
面试题整理 面试题---机器学习算法
面试题---推荐系统

python 复制代码
"""
传入一个list,以及几倍的sigma参数threshold,可以将数据中的正常值及离群值用不同颜色展示出来
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

def Outlier_visualization_line(data,threshold):
    plt.style.use('ggplot')
    data = pd.Series(data)
    mean = data.mean()
    std  = data.std()

    #筛选出离群值
    left  = mean - threshold * std
    right = mean + threshold * std
    error = data[(data<left)|(data>right)]
    data_c = data[(data>=left)&(data<=right)]
    # #不同着色,正常绿色,离群值红色
    # sp = np.where(data.isin(data_c),'g','r') 
    # 可视化
    fig = plt.figure(figsize=(12,8))
    plt.plot(data.index,data.values,'bo--',alpha=0.4)
    plt.scatter(error.index,error.values,c='r',s=60)
    plt.title('Outlier Visualization',size=20)
    plt.text(len(data)*0.4,data.values.max()+data.values.max()*0.01,
             r'$\mu={},\ \sigma={}$'.format(round(mean,2),round(std,2)),fontsize=14,bbox=dict(facecolor='red', alpha=0.2))
    # 添加水平辅助线plt.axhline,添加垂直辅助线plt.axvline(轴位置,线形,标签))
    plt.axhline(left,linestyle = '--',label="{} sigma low".format(threshold))
    plt.axhline(right,linestyle = '--',label="{} sigma up".format(threshold))
    plt.xlabel('Index',size=18)
    plt.ylabel('Value',size=18)
    plt.grid(True)
    plt.legend(loc='best')
    plt.show()
    fig.savefig('Outlier_visualization_line.png',dpi=600)

data = np.random.randn(100)*100
Outlier_visualization_line(data,threshold=1.5)
python 复制代码
"""
传入一个list,以及几倍的sigma参数threshold,可以将数据中的正常值及离群值用不同颜色展示出来
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

def Outlier_visualization_scatter(data,threshold):
    plt.style.use('ggplot')
    data = pd.Series(data)
    mean = data.mean()
    std  = data.std()

    #筛选出离群值
    left  = mean - threshold * std
    right = mean + threshold * std
    error = data[(data<left)|(data>right)]
    data_c = data[(data>=left)&(data<=right)]
    #不同着色,正常绿色,离群值红色
    sp = np.where(data.isin(data_c),'g','r') 
    # 可视化
    fig = plt.figure(figsize=(12,8))
    plt.scatter(data.index,data.values,marker='o',c=sp)
    plt.title('Outlier Visualization',size=20)
    plt.text(len(data)*0.4,data.values.max(),
             r'$\mu={},\ \sigma={}$'.format(round(mean,2),round(std,2)),fontsize=14,bbox=dict(facecolor='red', alpha=0.2))
    plt.xlabel('Index',size=18)
    plt.ylabel('Value',size=18)
    plt.grid(True)
    plt.show()
    fig.savefig('Outlier_visualization_scatter.png',dpi=600)

data = np.random.randn(10000)*100
Outlier_visualization_scatter(data,threshold=2.7)

友情提示 :如果你觉得这个博客对你有帮助,请点赞、评论和分享吧!如果你有任何问题或建议,也欢迎在评论区留言哦!!!

相关推荐
Serendipity_Carl8 小时前
1637加盟网数据实战(数分可视化)
爬虫·python·pycharm·数据可视化·数据清洗
马克学长2 天前
SSM疫苗注射动态数据可视化系统8i0b4(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面
数据库·数据可视化·ssm 框架·疫苗注射管理
老吴学AI3 天前
第 3 节 | 视觉魔术:Excel 如何用颜色和位置“控制”读者视线
信息可视化·数据分析·excel·职场·数据可视化·报表制作·用数据讲故事
CodeCraft Studio3 天前
如何借助TeeChart图表库,实现放射治疗QA数据的精准可视化
信息可视化·.net·数据可视化·teechart·医疗软件·医疗数据分析·医用图表
muddjsv3 天前
Matplotlib 饼图与环形图:占比类数据可视化方法
信息可视化·matplotlib
踏雪羽翼3 天前
android 图表实现
android·折线图·弹窗·图表·自定义图标
老吴学AI3 天前
第 2 节 | 从“呈现数据“到“驱动决策“:数据故事的力量
数据分析·数据可视化·excel教程·数据故事·职场技巧·业务洞察·报告编写
CodeCraft Studio5 天前
【案例分享】SciChart高性能数据可视化,助力某大型科研平台实现海量信号实时监测
信息可视化·数据分析·数据可视化·scichart·高性能图表引擎·科研平台
秋名山大前端5 天前
AI数字孪生本体智能技术方案
人工智能·aigc·数据可视化
如果曾经拥有5 天前
matplotlib - 绘制ROC曲线95%置信区间
matplotlib