人工智能-计算机视觉之图像增广

计算机视觉之图像增广

大型数据集是成功应用深度神经网络的先决条件。 图像增广在对训练图像进行一系列的随机变化之后,生成相似但不同的训练样本,从而扩大了训练集的规模。 此外,应用图像增广的原因是,随机改变训练样本可以减少模型对某些属性的依赖,从而提高模型的泛化能力。 例如,我们可以以不同的方式裁剪图像,使感兴趣的对象出现在不同的位置,减少模型对于对象出现位置的依赖。 我们还可以调整亮度、颜色等因素来降低模型对颜色的敏感度。 可以说,图像增广技术对于AlexNet的成功是必不可少的。本节将讨论这项广泛应用于计算机视觉的技术。

python 复制代码
%matplotlib inline
from mxnet import autograd, gluon, image, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

常用的图像增广方法

python 复制代码
d2l.set_figsize()
img = image.imread('../img/cat1.jpg')
d2l.plt.imshow(img.asnumpy());

07:07:52\] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager for CPU

大多数图像增广方法都具有一定的随机性。为了便于观察图像增广的效果,我们下面定义辅助函数apply。 此函数在输入图像img上多次运行图像增广方法aug并显示所有结果。

python 复制代码
def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):
    Y = [aug(img) for _ in range(num_rows * num_cols)]
    d2l.show_images(Y, num_rows, num_cols, scale=scale)
相关推荐
AI即插即用7 分钟前
即插即用系列 | AAAI 2026 WaveFormer: 当视觉建模遇上波动方程,频率-时间解耦的新SOTA
图像处理·人工智能·深度学习·神经网络·计算机视觉·视觉检测
轻览月8 分钟前
【DL】复杂卷积神经网络Ⅰ
人工智能·神经网络·cnn
逄逄不是胖胖16 分钟前
《动手学深度学习》-55-2RNN的简单实现
人工智能·深度学习
冰菓Neko18 分钟前
科目四刷题总结
人工智能
guizhoumen19 分钟前
2026年建站系统推荐及选项指南
大数据·运维·人工智能
咚咚王者25 分钟前
人工智能之核心技术 深度学习 第四章 循环神经网络(RNN)与序列模型
人工智能·rnn·深度学习
蘑菇物联28 分钟前
蘑菇物联入选“预见·2026”年度双榜,以AI技术赋能制造业绿色转型!
大数据·人工智能
无忧智库32 分钟前
智慧城市核心标准全景解析:从顶层设计到落地实践的深度解读(PPT)
人工智能·智慧城市
2501_9421917743 分钟前
【YOLOv26实战】健身器材物体检测与识别:从模型优化到实际应用
人工智能·yolo·目标跟踪
m0_466525291 小时前
东软与葫芦岛市民政局签约 共建智慧养老服务平台
大数据·人工智能