人工智能-计算机视觉之图像增广

计算机视觉之图像增广

大型数据集是成功应用深度神经网络的先决条件。 图像增广在对训练图像进行一系列的随机变化之后,生成相似但不同的训练样本,从而扩大了训练集的规模。 此外,应用图像增广的原因是,随机改变训练样本可以减少模型对某些属性的依赖,从而提高模型的泛化能力。 例如,我们可以以不同的方式裁剪图像,使感兴趣的对象出现在不同的位置,减少模型对于对象出现位置的依赖。 我们还可以调整亮度、颜色等因素来降低模型对颜色的敏感度。 可以说,图像增广技术对于AlexNet的成功是必不可少的。本节将讨论这项广泛应用于计算机视觉的技术。

python 复制代码
%matplotlib inline
from mxnet import autograd, gluon, image, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

常用的图像增广方法

python 复制代码
d2l.set_figsize()
img = image.imread('../img/cat1.jpg')
d2l.plt.imshow(img.asnumpy());

07:07:52\] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager for CPU

大多数图像增广方法都具有一定的随机性。为了便于观察图像增广的效果,我们下面定义辅助函数apply。 此函数在输入图像img上多次运行图像增广方法aug并显示所有结果。

python 复制代码
def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):
    Y = [aug(img) for _ in range(num_rows * num_cols)]
    d2l.show_images(Y, num_rows, num_cols, scale=scale)
相关推荐
智能化咨询3 分钟前
(68页PPT)埃森哲XX集团用户主数据治理项目汇报方案(附下载方式)
大数据·人工智能
说私域11 分钟前
分享经济应用:以“开源链动2+1模式AI智能名片S2B2C商城小程序”为例
人工智能·小程序·开源
工业机器视觉设计和实现11 分钟前
我的第三个cudnn程序(cifar10改cifar100)
人工智能·深度学习·机器学习
熊猫钓鱼>_>14 分钟前
PyTorch深度学习框架入门浅析
人工智能·pytorch·深度学习·cnn·nlp·动态规划·微分
Altair澳汰尔23 分钟前
成功案例丨仿真+AI技术为快消包装行业赋能提速:基于 AI 的轻量化设计节省数十亿美元
人工智能·ai·仿真·cae·消费品·hyperworks·轻量化设计
祝余Eleanor27 分钟前
Day 31 类的定义和方法
开发语言·人工智能·python·机器学习
背心2块钱包邮28 分钟前
第6节——微积分基本定理(Fundamental Theorem of Calculus,FTC)
人工智能·python·机器学习·matplotlib
也许是_28 分钟前
大模型应用技术之提示词高阶技巧
人工智能
ShiMetaPi41 分钟前
SAM(通用图像分割基础模型)丨基于BM1684X模型部署指南
人工智能·算法·ai·开源·bm1684x·算力盒子
自然语1 小时前
数字生命的自由意志:终极答案
人工智能