人工智能-计算机视觉之图像增广

计算机视觉之图像增广

大型数据集是成功应用深度神经网络的先决条件。 图像增广在对训练图像进行一系列的随机变化之后,生成相似但不同的训练样本,从而扩大了训练集的规模。 此外,应用图像增广的原因是,随机改变训练样本可以减少模型对某些属性的依赖,从而提高模型的泛化能力。 例如,我们可以以不同的方式裁剪图像,使感兴趣的对象出现在不同的位置,减少模型对于对象出现位置的依赖。 我们还可以调整亮度、颜色等因素来降低模型对颜色的敏感度。 可以说,图像增广技术对于AlexNet的成功是必不可少的。本节将讨论这项广泛应用于计算机视觉的技术。

python 复制代码
%matplotlib inline
from mxnet import autograd, gluon, image, init, np, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

常用的图像增广方法

python 复制代码
d2l.set_figsize()
img = image.imread('../img/cat1.jpg')
d2l.plt.imshow(img.asnumpy());

07:07:52\] ../src/storage/storage.cc:196: Using Pooled (Naive) StorageManager for CPU

大多数图像增广方法都具有一定的随机性。为了便于观察图像增广的效果,我们下面定义辅助函数apply。 此函数在输入图像img上多次运行图像增广方法aug并显示所有结果。

python 复制代码
def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):
    Y = [aug(img) for _ in range(num_rows * num_cols)]
    d2l.show_images(Y, num_rows, num_cols, scale=scale)
相关推荐
gzroy1 分钟前
智能体+MCP+NL2SQL构建一个智能数据分析应用(一)
人工智能·数据分析
胡萝卜3.02 分钟前
现代C++特性深度探索:模板扩展、类增强、STL更新与Lambda表达式
服务器·开发语言·前端·c++·人工智能·lambda·移动构造和移动赋值
智算菩萨3 分钟前
音乐生成模型综述:从符号作曲到音频域大模型、评测体系与产业化趋势
人工智能·深度学习·算法
AAD555888993 分钟前
YOLOX-Nano彩色盒子目标检测:8x8批量训练300轮COCO数据集优化方案
人工智能·目标检测·目标跟踪
丝斯20114 分钟前
AI学习笔记整理(30)—— 计算机视觉之动作识别相关算法
人工智能·笔记·学习
wei_shuo8 分钟前
AI 代理框架:使用正确的工具构建更智能的系统
人工智能
独自归家的兔13 分钟前
大模型通义千问3-VL-Plus - 视觉推理(图像列表)
人工智能·计算机视觉
Spring AI学习15 分钟前
Spring AI深度解析(8/50):模型评估体系实战
人工智能·spring·microsoft
周名彥17 分钟前
1Ω1[特殊字符]⊗雙朕周名彥|二十四芒星非硅基华夏原生AGI体系·授权绑定激活发布全维研究报告(S∅-Omega级·纯念主权终极版)
人工智能·去中心化·知识图谱·量子计算·agi