【spark】spark内核调度(重点理解)

目录

spark内核调度

DAG

Spark的核心是根据RDD来实现的,Spark Scheduler则为Spark核心实现的重要一环,其作用就是任务调度。Spark的任务调度就是如何组织任务去处理RDD中每个分区的数据,根据RDD的依赖关系构建DAG,基于DAG划分Stage,将每个Stage中的任务发到指定节点运行。基于Spark的任务调度原理,可以合理规划资源利用,做到尽可能用最少的资源高效地完成任务计算

  • DAG:有向无环图(有方向但是没有形成闭环的一个执行流程图)

    有向:有方向

    无环:没有闭环

  • Job和Action的关系

Action:返回值不是RDD的算子

Job:一个应用程序内的子任务

一个Action会产生一个Job,每一个Job有自己对应的DAG图

1个ACTION = 1个DAG = 1个JOB
层级关系:

一个Application中,可以有多个JOB,每一个JOB内含有一个DAG,同时每一个JOB都是由一个Action产生的。

  • DAG和分区:有关系

DAG的宽窄依赖和阶段划分

在SparkRDD前后之间的关系,分为

  • 窄依赖:父RDD的一个分区,全部将数据发给子RDD的一个分区
  • 宽依赖 :父RDD的一个分区,将数据发给子RDD的多个分区
  • 阶段划分 :对于Spark来说,会根据DAG按照宽依赖,划分不同的DAG阶段
    划分依据:从后向前,遇到宽依赖,就划分出一个阶段。称之stage

    如图,可以看到,在DAG中,基于宽依赖,将DAG划分成2个stage
    在stage内部一定是:窄依赖

内存迭代计算

基于带有内存的DAG,以及阶段划分。可以从图中可能出 逻辑上最优的task分配。一个task是一个线程来具体执行的。

task1中 rdd1、rdd2、rdd3的迭代计算,都是由一个task(线程完成),这一阶段的这一条线,是纯内存计算

task1 task2 task3,就形成了三个并行的 内存计算管道

面试题

Spark是怎样做内存计算的?DAG的作用是什么?Stage阶段划分的作用?

1、Spark任务会产生DAG图

2、DAG图会基于分区和宽窄依赖关系划分阶段

3、一个阶段的内部是窄依赖,窄依赖内,如果形成前后1:1分区对应关系,就可以产生许多内存迭代计算的管道

4、这些内存迭代计算的管道,就是一个个具体的执行Task

5、一个Task就是一个具体的线程,任务跑在一个线程内,就是走内存计算了

Spark为什么比MapReduce快

spark并行度

spark的并行:在同一时间内,有多少个task在同时运行

并行度:并行能力的设置

有6个task并行的前提下,rdd的分区就被规划成6个分区了

先有并行度,才会有的分区

如何设置并行度:spark.default.parallelism

可以在代码中和配置文件中以及提交程序的客户端参数中设置

优先级从高到低:

1、代码中

2、客户端提交参数中

3、配置文件中

4、默认

全局并行度是推荐设置,不要针对RDD改分区,可能会影响内存迭代管道的构建,或者会产生额外的shuffle

集群中如何规划并行度

结论:设置为CPU总核数的2~10倍

CPU的一个核心同一时间只能干一件事情

所以,在100个核心的情况下,设置100个并行度,就能让CPU 100%出力

这种设置下,如果task的压力不均衡,某个task先执行完了,就会导致CPU核心空闲

所以,我们将Task并行分配的数量变多,比如800个并行,同一时间只有100个在运行,700个在等待

但是可以确保,某个task运行完了,后续有task补上,不让cpu闲下来,最大程度利用集群资源

规划并行度,只看集群CPU核数

spark的任务调度

spark的任务调度由Drive进行调度,这个工作包含:

1、逻辑DAG产生

2、分区DAG产生

3、Task划分

4、将Task分配给Executor并监控其工作

  • Driver端被构建出来
  • 构建SparkContext(执行环境入口对象)
  • 基于DAG Scheduler(DAG调度器)构建逻辑Task分配
  • 基于TaskScheduler(Task调度器)将逻辑Task分配到各个Executor上干活,并监控他们
  • Worker(Executor),被TaskScheduler管理监控,听从他们的指令干活,并定期汇报进度。

Driver内两个组件:
DAGScheduler(DAG调度器)

工作内容:将逻辑的DAG图进行处理,最终得到逻辑上的Task划分
TaskScheduler(Task调度器)

工作内容:基于DAG Scheduler的产生,来规划这些逻辑的task,应该在哪些物理的Excutor上运行,以及监控管理他们的运行

Spark运行中的概念名词大全

1、一个spark环境可以运行多个Application

2、一个代码运行起来,会成为一个Application

3、Application内部可以有多个Job

4、每个Job由一个Action产生,并且每个Job有自己的DAG执行图

5、一个Job的DAG图 会基于宽窄依赖划分成不同的阶段

6、不同阶段内基于分区数量,形成多个并行的内存迭代管道

7、没一个内存迭代管道形成一个Task(DAG调度器划分将Job内划分出具体task任务,一个Job被划分出来的task在逻辑上称之为这个Job的taskset)

相关推荐
正在走向自律8 分钟前
阿里云ESC服务器一次性全部迁移到另一个ESC
服务器·阿里云·云计算
gywl33 分钟前
openEuler VM虚拟机操作(期末考试)
linux·服务器·网络·windows·http·centos
了一li2 小时前
Qt中的QProcess与Boost.Interprocess:实现多进程编程
服务器·数据库·qt
日记跟新中2 小时前
Ubuntu20.04 修改root密码
linux·运维·服务器
唐小旭2 小时前
服务器建立-错误:pyenv环境建立后python版本不对
运维·服务器·python
明 庭2 小时前
Ubuntu下通过Docker部署NGINX服务器
服务器·ubuntu·docker
BUG 4042 小时前
Linux——Shell
linux·运维·服务器
007php0072 小时前
Go语言zero项目部署后启动失败问题分析与解决
java·服务器·网络·python·golang·php·ai编程
yang_shengy2 小时前
【JavaEE】网络(6)
服务器·网络·http·https