数据结构学习 Leetcode1143最长公共子序列

动态规划 最长公共子序列LCS

这是我在看动态规划学习的时候做的。

这是一篇LCS。LCS是两个数组进行比较。

题目:

思路:

我觉得这个总结挺好的:

求两个数组或者字符串的最长公共子序列问题,肯定是要用动态规划的。

首先,区分两个概念:子序列可以是不连续的;子数组(子字符串)需要是连续的;

另外,动态规划也是有套路的:单个数组或者字符串 要用动态规划时,可以把动态规划 dp[i] 定义为 nums[0:i] 中想要求的结果;当两个数组或者字符串 要用动态规划时,可以把动态规划定义成两维的 dp[i][j] ,其含义是在 A[0:i]B[0:j] 之间匹配得到的想要的结果。

状态: dp[i][j]:第一个串的前i位和第二个串的前j位中的最长公共子序列

转移方程:

复杂度计算:

时间复杂度:O(nm)

空间复杂度:O(nm)

代码:

cpp 复制代码
#include <string>
#include <vector>
#include <iostream>
//动态规划
// 最长公共子序列
//时间复杂度:O(n×m)
//空间复杂度:O(n×m)
class Solution {
public:
    int longestCommonSubsequence(std::string text1, std::string text2) {
        std::vector<std::vector<int>> dp(text1.size(), std::vector<int>(text2.size(), 0));
        for (int i = 0; i < text1.size(); ++i)
        {
            for (int j = 0; j < text2.size(); ++j)
            {
                if (text1[i] == text2[j])
                    dp[i][j] = (i > 0 && j > 0) ? dp[i - 1][j - 1] + 1 : 1;
                else
                {
                    int a_tmp = i > 0 ? dp[i - 1][j] : 0;
                    int b_tmp = j > 0 ? dp[i][j - 1] : 0;
                    dp[i][j] = std::max(a_tmp, b_tmp);
                }
                    
            }
        }
        return dp[text1.size() - 1][text2.size() - 1];
    }
};

void Test_solution1()
{
    std::string text1{ "abceda" };
    std::string text2{ "acea" };
    Solution solution;
    std::cout<<solution.longestCommonSubsequence(text1, text2);
}
相关推荐
2303_Alpha2 天前
SpringBoot
笔记·学习
萘柰奈2 天前
Unity学习----【进阶】TextMeshPro学习(三)--进阶知识点(TMP基础设置,材质球相关,两个辅助工具类)
学习·unity
沐矢羽2 天前
Tomcat PUT方法任意写文件漏洞学习
学习·tomcat
好奇龙猫2 天前
日语学习-日语知识点小记-进阶-JLPT-N1阶段蓝宝书,共120语法(10):91-100语法+考え方13
学习
向阳花开_miemie2 天前
Android音频学习(十八)——混音流程
学习·音视频
工大一只猿2 天前
51单片机学习
嵌入式硬件·学习·51单片机
c0d1ng2 天前
量子计算学习(第十四周周报)
学习·量子计算
Hello_Embed2 天前
STM32HAL 快速入门(二十):UART 中断改进 —— 环形缓冲区解决数据丢失
笔记·stm32·单片机·学习·嵌入式软件
咸甜适中2 天前
rust语言 (1.88) 学习笔记:客户端和服务器端同在一个项目中
笔记·学习·rust
Magnetic_h2 天前
【iOS】设计模式复习
笔记·学习·ios·设计模式·objective-c·cocoa