数据结构学习 Leetcode1143最长公共子序列

动态规划 最长公共子序列LCS

这是我在看动态规划学习的时候做的。

这是一篇LCS。LCS是两个数组进行比较。

题目:

思路:

我觉得这个总结挺好的:

求两个数组或者字符串的最长公共子序列问题,肯定是要用动态规划的。

首先,区分两个概念:子序列可以是不连续的;子数组(子字符串)需要是连续的;

另外,动态规划也是有套路的:单个数组或者字符串 要用动态规划时,可以把动态规划 dp[i] 定义为 nums[0:i] 中想要求的结果;当两个数组或者字符串 要用动态规划时,可以把动态规划定义成两维的 dp[i][j] ,其含义是在 A[0:i]B[0:j] 之间匹配得到的想要的结果。

状态: dp[i][j]:第一个串的前i位和第二个串的前j位中的最长公共子序列

转移方程:

复杂度计算:

时间复杂度:O(nm)

空间复杂度:O(nm)

代码:

cpp 复制代码
#include <string>
#include <vector>
#include <iostream>
//动态规划
// 最长公共子序列
//时间复杂度:O(n×m)
//空间复杂度:O(n×m)
class Solution {
public:
    int longestCommonSubsequence(std::string text1, std::string text2) {
        std::vector<std::vector<int>> dp(text1.size(), std::vector<int>(text2.size(), 0));
        for (int i = 0; i < text1.size(); ++i)
        {
            for (int j = 0; j < text2.size(); ++j)
            {
                if (text1[i] == text2[j])
                    dp[i][j] = (i > 0 && j > 0) ? dp[i - 1][j - 1] + 1 : 1;
                else
                {
                    int a_tmp = i > 0 ? dp[i - 1][j] : 0;
                    int b_tmp = j > 0 ? dp[i][j - 1] : 0;
                    dp[i][j] = std::max(a_tmp, b_tmp);
                }
                    
            }
        }
        return dp[text1.size() - 1][text2.size() - 1];
    }
};

void Test_solution1()
{
    std::string text1{ "abceda" };
    std::string text2{ "acea" };
    Solution solution;
    std::cout<<solution.longestCommonSubsequence(text1, text2);
}
相关推荐
eybk2 小时前
Pytorch+Mumu模拟器+萤石摄像头实现对小孩学习的监控
学习
6.942 小时前
Scala学习记录 递归调用 练习
开发语言·学习·scala
守护者1703 小时前
JAVA学习-练习试用Java实现“使用Arrays.toString方法将数组转换为字符串并打印出来”
java·学习
学会沉淀。3 小时前
Docker学习
java·开发语言·学习
Rinai_R3 小时前
计算机组成原理的学习笔记(7)-- 存储器·其二 容量扩展/多模块存储系统/外存/Cache/虚拟存储器
笔记·物联网·学习
吃着火锅x唱着歌3 小时前
PHP7内核剖析 学习笔记 第四章 内存管理(1)
android·笔记·学习
ragnwang3 小时前
C++ Eigen常见的高级用法 [学习笔记]
c++·笔记·学习
Web阿成5 小时前
3.学习webpack配置 尝试打包ts文件
前端·学习·webpack·typescript
雷神乐乐5 小时前
Spring学习(一)——Sping-XML
java·学习·spring