循环神经网络中的梯度消失或梯度爆炸问题产生原因分析(二)

上一篇中讨论了一般性的原则,这里我们具体讨论通过时间反向传播(backpropagation through time,BPTT)的细节。我们将展示目标函数对于所有模型参数的梯度计算方法。

出于简单的目的,我们以一个没有偏置参数的循环神经网络,其在隐藏层中的激活函数使用恒等函数()。

对于时间步,单个样本的输入及其标签分别为。计算隐状态和输出的公式为

其中,权重参数为

目标函数为:

通常,训练这个模型需要对这些参数分别进行梯度计算:

其中:

中可以看到,这个简单的线性例子已经展现出长序列模型的一些关键问题:

它陷入到了的潜在的非常大的指数幂。在这个指数幂中,小于1的特征值将会消失(出现梯度消失 ),大于1的特征值将会发散(出现梯度爆炸)。

相关推荐
哥布林学者1 小时前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入(五)GloVe 算法
深度学习·ai
kuiini1 小时前
模型转换、加速与推理优化【Plan 8】
深度学习
Quintus五等升2 小时前
深度学习④|分类任务—VGG13
人工智能·经验分享·深度学习·神经网络·学习·机器学习·分类
2501_936146042 小时前
小型机械零件识别与分类--基于YOLO12-A2C2f-DFFN-DYT模型的创新实现
人工智能·分类·数据挖掘
天天讯通2 小时前
金融邀约实时质检:呼叫监控赋能客服主管
人工智能·金融
飞Link3 小时前
深度解析 MSER 最大稳定极值区域算法
人工智能·opencv·算法·计算机视觉
夜勤月3 小时前
给AI装上“文件之手”:深入解析MCP文件系统服务的安全沙箱与读写实践
人工智能·安全
万物得其道者成3 小时前
UI UX Pro Max: AI 驱动的设计系统生成引擎深度解析
人工智能·ui·ux
码农三叔3 小时前
(3-2)机器人身体结构与人体仿生学:人形机器人躯干系统
人工智能·架构·机器人·人形机器人
bleuesprit3 小时前
LLM语言模型Lora微调
人工智能·语言模型·lora