Hive-high Avaliabl

hive---high Avaliable

​ hive的搭建方式有三种,分别是

​ 1、Local/Embedded Metastore Database (Derby)

​ 2、Remote Metastore Database

​ 3、Remote Metastore Server

​ 一般情况下,我们在学习的时候直接使用hive --service metastore的方式启动服务端,使用hive的方式直接访问登录客户端,除了这种方式之外,hive提供了hiveserver2的服务端启动方式,提供了beeline和jdbc的支持,并且官网也提出,一般在生产环境中,使用hiveserver2的方式比较多,如图:

使用hiveserver2的优点如下:

​ 1、在应用端不需要部署hadoop和hive的客户端

​ 2、hiveserver2不用直接将hdfs和metastore暴露给用户

​ 3、有HA机制,解决应用端的并发和负载问题

​ 4、jdbc的连接方式,可以使用任何语言,方便与应用进行数据交互

本文档主要介绍如何进行hive的HA的搭建:

如何进行搭建,参照之前hadoop的HA,使用zookeeper完成HA

1、环境如下:

Node01 Node02 Node03 Node04
Namenode 1 1
Journalnode 1 1 1
Datanode 1 1 1
Zkfc 1 1
zookeeper 1 1 1
resourcemanager 1 1 1
nodemanager 1 1 1
Hiveserver2 1
beeline 1

2、node02---hive-site.xml

xml 复制代码
<property>  
  <name>hive.metastore.warehouse.dir</name>  
  <value>/user/hive/warehouse</value>  
</property>  
<property>  
  <name>javax.jdo.option.ConnectionURL</name>  
  <value>jdbc:mysql://node01:3306/hive?createDatabaseIfNotExist=true</value>  
</property>  
<property>  
  <name>javax.jdo.option.ConnectionDriverName</name>  
  <value>com.mysql.jdbc.Driver</value>  
</property>     
<property>  
  <name>javax.jdo.option.ConnectionUserName</name>  
  <value>root</value>  
</property>  
<property>  
  <name>javax.jdo.option.ConnectionPassword</name>  
  <value>123</value>  
</property>
<property>
  <name>hive.server2.support.dynamic.service.discovery</name>
  <value>true</value>
</property>
<property>
  <name>hive.server2.zookeeper.namespace</name>
  <value>hiveserver2_zk</value>
</property>
<property>
  <name>hive.zookeeper.quorum</name>
  <value>node01:2181,node02:2181,node03:2181</value>
</property>
<property>
  <name>hive.zookeeper.client.port</name>
  <value>2181</value>
</property>
<property>
  <name>hive.server2.thrift.bind.host</name>
  <value>node02</value>
</property>
<property>
  <name>hive.server2.thrift.port</name>
  <value>10001</value> 
</property>

3、node4---hive-site.xml

xml 复制代码
<property>  
  <name>hive.metastore.warehouse.dir</name>  
  <value>/user/hive/warehouse</value>  
</property>  
<property>  
  <name>javax.jdo.option.ConnectionURL</name>  
  <value>jdbc:mysql://node01:3306/hive?createDatabaseIfNotExist=true</value>  
</property>  
<property>  
  <name>javax.jdo.option.ConnectionDriverName</name>  
  <value>com.mysql.jdbc.Driver</value>  
</property>     
<property>  
  <name>javax.jdo.option.ConnectionUserName</name>  
  <value>root</value>  
</property>  
<property>  
  <name>javax.jdo.option.ConnectionPassword</name>  
  <value>123</value>  
</property>
<property>
  <name>hive.server2.support.dynamic.service.discovery</name>
  <value>true</value>
</property>
<property>
  <name>hive.server2.zookeeper.namespace</name>
  <value>hiveserver2_zk</value>
</property>
<property>
  <name>hive.zookeeper.quorum</name>
  <value>node01:2181,node02:2181,node03:2181</value>
</property>
<property>
  <name>hive.zookeeper.client.port</name>
  <value>2181</value>
</property>
<property>
  <name>hive.server2.thrift.bind.host</name>
  <value>node04</value>
</property>
<property>
  <name>hive.server2.thrift.port</name>
  <value>10001</value> 
</property>

4、使用jdbc或者beeline两种方式进行访问

1) beeline

!connect jdbc:hive2://node01,node02,node03/;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=hiveserver2_zk root 123

2)jdbc

java 复制代码
public class HiveJdbcClient2 {

	private static String driverName = "org.apache.hive.jdbc.HiveDriver";

	public static void main(String[] args) throws SQLException {
		try {
			Class.forName(driverName);
		} catch (ClassNotFoundException e) {
			e.printStackTrace();
		}

		Connection conn = DriverManager.getConnection("jdbc:hive2://node01,node02,node03/default;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=hiveserver2_zk", "root", "");
		Statement stmt = conn.createStatement();
		String sql = "select * from tbl";
		ResultSet res = stmt.executeQuery(sql);
		while (res.next()) {
			System.out.println(res.getString(1));
		}
	}
}

相关推荐
云器科技18 小时前
无需CDP:基于现有数据仓库构建高效用户画像系统
数据仓库·湖仓一体·lakehouse·无需 cdp
xerthwis1 天前
HDFS:那座正在云化与解构的“古老高墙”
大数据·数据仓库·人工智能·hdfs·数据库开发·数据库架构
xerthwis2 天前
Hadoop:大数据世界的“古老基石”与“沉默的共生者”
大数据·人工智能·hadoop
yumgpkpm2 天前
Cloudera CDH5|CDH6|CDP7.1.7|CDP7.3|CMP 7.3的产品优势分析(在华为鲲鹏 ARM 麒麟KylinOS、统信UOS)
大数据·人工智能·hadoop·深度学习·spark·transformer·cloudera
ghgxm5202 天前
EXCEL使用VBA代码实现按条件查询数据库--简单实用
开发语言·数据仓库·笔记·excel·数据库开发
yumgpkpm2 天前
Hadoop如何用Flink支持实时数据分析需求
大数据·hadoop·分布式·hdfs·flink·kafka·cloudera
喻师傅3 天前
Hive 中 NULL 值在逻辑判断中的“陷阱”(踩坑复盘)
数据仓库·hive·hadoop
涤生大数据3 天前
放弃Canal后,我们用Flink CDC实现了99.99%的数据一致性
大数据·数据仓库·flink·大数据开发·flink cdc·数据开发·实时数据
jinxinyuuuus3 天前
订阅指挥中心:数据可移植性、Schema设计与用户数据主权
数据仓库·人工智能
老徐电商数据笔记4 天前
技术复盘第四篇:Kimball维度建模在电商场景的实战应用
大数据·数据仓库·技术面试