Kafka消费者组

消费者总体工作流程

Consumer Group(CG):消费者组,由多个consumer组成。形成一个消费者组的条件,是所有消费者的groupid相同。

• 消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费。

• 消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。

消费者组初始化流程

1、coordinator:辅助实现消费者组的初始化和分区的分配。 coordinator节点选择 = groupid的hashcode值 % 50( __consumer_offsets的分区数量) 例如: groupid的hashcode值 = 1,1% 50 = 1,那么__consumer_offsets 主题的1号分区,在哪个broker上,就选择这个节点的coordinator 作为这个消费者组的老大。消费者组下的所有的消费者提交offset的时候就往这个分区去提交offset;

2、coordinator选出一个 consumer作为leader;

3、coordinator把要消费的topic情况发送给leader消费者;

4、leader会负责制定消费方案;

5、把消费方案发给coordinator;

6、Coordinator就把消费方 案下发给各个consumer;

7、每个消费者都会和coordinator保持心跳(默认3s),一旦超时 (session.timeout.ms=45s),该消费者会被移除,并触发再平衡; 或者消费者处理消息的时间过长(max.poll.interval.ms5分钟),也会触发再平衡

消费者组详细消费流程

左侧为Kafka集群,右侧为消费者组,消费者创建网络连接客户端,消费者组调用sendFetches,抓取数据,同时还会准备两个参数,Fetch.min.bytes:每批次最小抓取大小,默认1字节,fetch.max.wait.ms一批数据最小值未达到的超时时间,默认500ms,任一条件满足,都会拉取数据;Fetch.max.bytes每批次最 大抓取大小,默认50m

send->拉取数据将数据放进completedFetches队列,消费者一批次拉取默认500条进行处理:反序列化->拦截器->处理数据

java 复制代码
package com.atguigu.kafka.consumer;

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.time.Duration;
import java.util.ArrayList;
import java.util.Properties;

public class CustomConsumer {
    public static void main(String[] args) {

        //配置
        Properties properties = new Properties();

        //链接
        properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092,hadoop103:9092");

        //反序列化
        properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class.getName());

        //配置消费者组id
        properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test");

        //1.创建消费者
        KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);

        //2。订阅主题
        ArrayList<String> topics = new ArrayList<>();
        topics.add("first");
        kafkaConsumer.subscribe(topics);

        //3.消费数据
        while(true){
            ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1));//拉数据
            for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                System.out.println(consumerRecord);
            }
        }
    }
}
相关推荐
面向Google编程8 小时前
从零学习Kafka:数据存储
后端·kafka
Jackeyzhe8 小时前
从零学习Kafka:数据存储
kafka
SoleMotive.19 小时前
谢飞机爆笑面经:Java大厂3轮12问真题拆解(Redis穿透/Kafka分区/MCP Agent)
redis·spring cloud·kafka·java面试·mcp
程序猿阿伟20 小时前
《分布式追踪Span-业务标识融合:端到端业务可观测手册》
分布式
爆米花byh20 小时前
在RockyLinux9环境的Kafka4.1.1单机版安装(无ZK依赖)
中间件·kafka
yumgpkpm21 小时前
预测:2026年大数据软件+AI大模型的发展趋势
大数据·人工智能·算法·zookeeper·kafka·开源·cloudera
消失的旧时光-19431 天前
第十六课实战:分布式锁与限流设计 —— 从原理到可跑 Demo
redis·分布式·缓存
若水不如远方1 天前
分布式一致性(三):共识的黎明——Quorum 机制与 Basic Paxos
分布式·后端·算法
DemonAvenger1 天前
Kafka消费者深度剖析:消费组与再平衡原理
性能优化·kafka·消息队列
会算数的⑨1 天前
Kafka知识点问题驱动式的回顾与复习——(一)
分布式·后端·中间件·kafka