第一章 科学计算
误差
解题步骤:
- 先求绝对误差:
∣ x − x ∗ ∣ |x - x^*| ∣x−x∗∣ - 求相对误差限:
∣ x − x ∗ ∣ x ∗ \frac{|x\,\,-\,\,x^*|}{x^*} x∗∣x−x∗∣ - 求有效数字
∣ x − x ∗ ∣ 需要小于它自身的半个单位 |x-x^*|\text{需要小于它自身的半个单位} ∣x−x∗∣需要小于它自身的半个单位,然后算小数点后一共有多少数字
举个例子:
相减得出结果为0.0000345则小于0.0005,则有效数字为4
例题1:
第二章 线性代数直接法
高斯消去法
高斯顺序消去法
解题步骤(假设是一个三行三列的矩阵):
- 先用第一行消去2,3行
- 再用第二行消去第三行
例题1:
例题2:
高斯列主元消去法
解题步骤:
- 比较哪一行的绝对值最大,然后交换
- 用第一行消去第2、3行
- 再次比较哪一行绝对值最大,交换
- 重复步骤
例题1:
例题2:
LU分解
LU分解又称为:杜利特尔 (Doolittle)分解法,直接三角分解法
解题步骤
- 将A矩阵分解成L、U矩阵
- L矩阵:下三角矩阵,对角线全为1,其他元素为x
- U矩阵:上三角矩阵,第一行元素和A矩阵相同,其他元素为x
- 从A中矩阵逆向推导,L、U剩下的元素逐一相乘得出结果
- 按照顺序一行一行的元素去算
例题1:
追赶法
追赶法又称为:克劳特分解
思路:
- 将A矩阵分解为L、U矩阵
- L矩阵的特点:下三角矩阵,对角线为未知数 α \alpha α,其他元素对A照抄
- U矩阵的特点:上三角矩阵,对角线为1,对角线上面的元素为 β \beta β
- 把 α , β \alpha,\beta α,β全部算出来
- L y = b Ly=b Ly=b -> U x = y Ux=y Ux=y
例题:
第三章 线性代数方程组的迭代法
范数和条件数
- 1范数(列范数):每一列元素的绝对值之和的最大值 ∣ ∣ A ∣ ∣ 1 ||A||_1 ∣∣A∣∣1
- 无穷范数(行范数):每一行元素的绝对值之和的最大值
- 2范数:
- 向量:向量元素平方的和的平方根
- 矩阵(又称为谱范数):null
- 无穷范数条件数:
c o n d ∞ ( A ) = ∣ ∣ A ∣ ∣ ∞ ∣ ∣ A − 1 ∣ ∣ ∞ cond_{\infty}\left( A \right) \,\,=\,\,||A||{\infty}||A^{-1}||{\infty} cond∞(A)=∣∣A∣∣∞∣∣A−1∣∣∞
例题1:
例题2:
求 A − 1 A^{-1} A−1的方法
- 初等变换法
第九章 常微分方程初边值问题数值解
龙格-库塔公式
基本概念
一般问题会有 y ′ , h , f ( x ) = y y', h , f(x) = y y′,h,f(x)=y等参数
将其转换为
注意h的值,一般是在 0 ≤ x ≤ 1 0 \le x \le 1 0≤x≤1之间,逐渐相加之后递增到1结束计算
四阶四段龙格库塔公式如下:
解题步骤
- 将 x 0 , y 0 , h x_0,y_0,h x0,y0,h写在旁边
- 将将题目中给出的已知信息代入 k 1 , k 2 , k 3 , k 4 k_1,k_2,k_3,k_4 k1,k2,k3,k4
- 更新 y n y_n yn的值
- 重复过程
k 2 k_2 k2->f的 x n + h 2 x_n+\frac{h}{2} xn+2h表示 x x x,同理另外一个表示 y y y,将其代入到f(x,y)中进行化简