连通域分割Two-Pass算法及其Python实现

文章目录

连通域Two-Pass算法

在没有任何先验知识的情况下,想完成连通域的搜索,几乎最直接的想法,就是遍历图像所有像素点,如果两个像素点相连接,便将二者视为一体,直到遍历所有的像素。但这种遍历在遇到类似下面的图像时就会出现问题。

1 2 3 \begin{matrix} &1\\ 2&3 \end{matrix} 213

上面的矩阵中,数字代表有效像素,如果扫描顺序是从左向右,从上到下,那么在扫描第二行时, 2 2 2并不和 1 1 1联通, 3 3 3尽管和 1 , 2 1,2 1,2均联通,但只能赋予1个编号,从而上面的情况最终标记如下

1 2 1 \begin{matrix} &1\\ 2&1 \end{matrix} 211

所以,原本属于一个连通域的3个像素点,被分为 1 , 3 1,3 1,3和 2 2 2两个区域,所以需要再去遍历一次,把相邻的不同编号统一,这就是Two-Pass算法的基本思想。

数据准备

在具体实现算法之前,先准备一张二值图像,并封装一个绘图函数。

python 复制代码
import matplotlib.pyplot as plt
from scipy.ndimage import binary_erosion
import numpy as np
path = r"coin.png"
img = plt.imread(path).astype(float)
img = np.mean(img, axis=2)
th = 0.513    # climb(img, 0.1, 0, 0.01)
b = img>0.4

def drawImg(im1, im2, c1='jet', c2='jet'):
    fig = plt.figure()
    ax = fig.add_subplot(121)
    plt.imshow(im1, cmap=c1)
    plt.axis('off')
    ax = fig.add_subplot(122)
    plt.imshow(im2, cmap=c2)
    plt.axis('off')
    plt.show()

b = img>0.4
bb = binary_erosion(b, np.ones([5,5]))

第一次

第一次扫描的目的是建立当前像素与左边和上边的像素之间的联通关系,同时需要一个字典保存这种映射,为后续的连通域合并做准备。

python 复制代码
def firstPass(inImg):
    L = 0       # 标记号
    outImg = inImg.astype(float)
    h, w = inImg.shape
    dct = {}
    for i,j in product(range(h), range(w)):
        if inImg[i,j] == 0:
            continue
        neighbors = []   # 记录符合要求的邻域前景
        if i-1> 0 and inImg[i-1, j]>0:
            neighbors.append(outImg[i-1, j])
        if j-1 > 0 and inImg[i, j-1] > 0:
            neighbors.append(outImg[i, j-1])
        if len(neighbors) == 0:
            L += 1
            outImg[i,j] = L
            dct[L] = [[i],[j]]
        else:
            tmpL = min(neighbors)
            outImg[i,j] = tmpL
            dct[tmpL][0].append(i)
            dct[tmpL][1].append(j)
    return outImg, dct

实验效果如下

python 复制代码
c1, d = firtPass(bb)
drawImg(bb, c1)

第二次

第二次扫描的目的是,将属于同一连通域,但编号不同的区域,赋予相同的序号。为此 ,需要再次遍历图像,并通过第一次遍历得到的映射字典,来完成连通域的合并。

python 复制代码
def secondPass(outImg, dct):
    outImg = outImg * 1
    print('version')
    for i,j in zip(*np.where(outImg!=0)):
        Ls = [outImg[i,j]]
        if i-1>0 and outImg[i-1,j] != 0:
            Ls.append(outImg[i-1,j])
        if j-1 > 0 and outImg[i, j-1] != 0:
            Ls.append(outImg[i, j-1])
        Ls = np.unique(Ls)
        if len(Ls)<2:
            continue
        minL = np.min(Ls)
        for L in Ls:
            if L == minL:
                continue
            y,x = dct[L]
            outImg[y,x] = minL
            dct[minL][0].extend(dct[L][0])
            dct[minL][1].extend(dct[L][1])
            del dct[L]
    u = np.unique(outImg)
    u = np.sort(u)  # 排序
    N = len(u) - 1  # 此为图标数
    for i in range(1, N+1):
        outImg[outImg==u[i]] = i
    N = len(np.unique(outImg))
    return N, outImg

效果如下

python 复制代码
n, c2 = secondPass(c1, d)
drawImg(c1, c2)
相关推荐
颜酱4 小时前
图结构完全解析:从基础概念到遍历实现
javascript·后端·算法
m0_736919104 小时前
C++代码风格检查工具
开发语言·c++·算法
yugi9878384 小时前
基于MATLAB强化学习的单智能体与多智能体路径规划算法
算法·matlab
喵手5 小时前
Python爬虫实战:旅游数据采集实战 - 携程&去哪儿酒店机票价格监控完整方案(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集结果csv导出·旅游数据采集·携程/去哪儿酒店机票价格监控
2501_944934735 小时前
高职大数据技术专业,CDA和Python认证优先考哪个?
大数据·开发语言·python
helloworldandy5 小时前
使用Pandas进行数据分析:从数据清洗到可视化
jvm·数据库·python
DuHz5 小时前
超宽带脉冲无线电(Ultra Wideband Impulse Radio, UWB)简介
论文阅读·算法·汽车·信息与通信·信号处理
Polaris北极星少女5 小时前
TRSV优化2
算法
代码游侠6 小时前
C语言核心概念复习——网络协议与TCP/IP
linux·运维·服务器·网络·算法
2301_763472466 小时前
C++20概念(Concepts)入门指南
开发语言·c++·算法