避免大M取值过大引起的数值问题

在数学建模当中,常常会见到大M法,它之所以叫大M法,是因为它涉及到一个(绝对值)较大的系数M,这个大M的值应大于约束中的连续变量或者约束表达式可能取到的任何合理值,M值取过大往往会造成优化问题求解的不稳定性。举以下例子:

x ≤ 1 0 6 y x ≥ 0 y ∈ { 0 , 1 } x\leq 10^6y\\x\geq 0\\ y\in \{0,1\} x≤106yx≥0y∈{0,1}

大M约束通常用在将二元变量的信息传播给连续变量,如上述例子,只有当 y = 1 y=1 y=1 时, x x x 才能取到非0的整数值,假如求解器的整数容忍误差为 1 0 − 5 10^{-5} 10−5(详见相关文章),则 y = 0.000009999 y=0.000009999 y=0.000009999 满足整数条件,被视为等于0,但此时代入上述约束后,得到 x ≤ 9.999 x\leq 9.999 x≤9.999, x x x 最大可以取到 9 的正整数值,并不符合一开始说的只有 y = 1 y=1 y=1 时, x x x 才能取到非 0 整数值的关系。尽管我们能够调整求解器的整数容忍误差,但当大M的取值更大时,就不能避免这种情况。

因此,另一个常用的方式是通过额外的信息来收紧大M的值(详见相关文章),对于整数容忍误差为 1 0 − 5 10^{-5} 10−5 的求解器而言,大M的值比 1 0 − 5 10^{-5} 10−5 小就能实现目标,例如上述约束,在如下形式:

x ≤ 1 0 3 y x ≥ 0 y ∈ { 0 , 1 } x\leq 10^3y\\x\geq 0\\ y\in \{0,1\} x≤103yx≥0y∈{0,1}

即使 y = 0.000009999 y=0.000009999 y=0.000009999,约束也仅允许 x ≤ 0.009999 x\leq 0.009999 x≤0.009999,满足约束的初始意图。

特别的,如果我们自己用大M法实在是难以收紧大M的取值,不得不用较大的值进行约束,则可以利用一些求解器自带的SOS约束函数(当 y = 0 ⇒ x = 0 y=0\Rightarrow x=0 y=0⇒x=0),这些SOS约束函数在求解器内部也是通过大M法进行转化,且会以一定的额外求解时间为代价。

相关推荐
spssau1 小时前
2026数学建模美赛题目特点与选题建议,常用四大模型汇总
数学建模
木头左1 天前
Backtrader平台下指数期权备兑策略回测实现
数学建模
王然-HUDDM3 天前
HUDDM(全息普适需求动力学模型)详解
数学建模·架构·系统架构·agi·预编码算法
lisw054 天前
计算神经科学:概念、历史、内容与发展战略!
人工智能·科技·数学建模
Deepoch4 天前
Deepoc数学大模型:通信行业智能化的算法引擎
人工智能·算法·数学建模·开发板·通信·具身模型·deepoc
wheeldown5 天前
【数学建模】用代码搞定无人机烟幕:怎么挡导弹最久?
数学建模·无人机
民乐团扒谱机7 天前
【微实验】数模美赛备赛:多目标优化求解实战(MATLAB实现,以流水车间调度为例)
开发语言·数学建模·matlab·甘特图·遗传算法·多目标优化·优化模型
88号技师7 天前
2026年1月一区SCI-最优或最劣优化器Farthest better or nearest worse optimizer-附Matlab免费代码
开发语言·数学建模·matlab·启发式算法·优化算法
88号技师7 天前
2025年11月一区SCI-电磁波传播优化算法Electromagnetic wave propagation algorithm-附Matlab免费代码
开发语言·算法·数学建模·matlab·优化算法
3Bronze1Pyramid8 天前
【微分方程——传染病模型(一)】
数学建模