Binary Tree Right Side View

Problem

Given the root of a binary tree, imagine yourself standing on the right side of it, return the values of the nodes you can see ordered from top to bottom.

Example 1:

复制代码
Input: root = [1,2,3,null,5,null,4]
Output: [1,3,4]

Example 2:

复制代码
Input: root = [1,null,3]
Output: [1,3]

Example 3:

复制代码
Input: root = []
Output: []

Intuition

The task is to imagine standing on the right side of a binary tree and returning the values of the nodes visible from that perspective. The intuition is to perform a level order traversal of the binary tree and, for each level, only consider the value of the rightmost node, as that would be the one visible from the right side.

Approach

Initialization:

Check if the root is None. If so, return an empty list since there are no nodes to traverse.

Breadth-First Search (BFS):

Use a queue (in this case, a deque) to perform a breadth-first traversal of the binary tree.

Initialize the queue with the root node.

Right Side View:

While the queue is not empty:

For each level, create a temporary list (temp) to store the values of nodes.

Process all nodes at the current level:

Pop the front node from the queue.

Enqueue its left and right children (if any).

Append the value of the current node to the temp list.

If the temp list is not empty, append the value of the rightmost node to the final result (stack).

Return Result:

Return the final result, which is a list of values representing the nodes visible from the right side.

Complexity

  • Time complexity:

The time complexity is O(n), where n is the number of nodes in the binary tree. Each node is visited exactly once during the traversal.

  • Space complexity:

The space complexity is O(m), where m is the maximum number of nodes at any level in the binary tree. In the worst case, the maximum number of nodes at any level is the number of leaf nodes, which is at most n/2 in a balanced binary tree. Therefore, the space complexity is O(n/2), which simplifies to O(n) in big-O notation. This is because the space required to store nodes at any level scales with the number of nodes in the tree.

Code

复制代码
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def rightSideView(self, root: Optional[TreeNode]) -> List[int]:
        if not root:
            return []

        stack = [root.val]
        q = deque([root])
        while q:
            temp = []
            for _ in range(len(q)):
                node = q.popleft()
                if node.left:
                    q.append(node.left)
                    temp.append(node.left.val)
                if node.right:
                    q.append(node.right)
                    temp.append(node.right.val)

            if temp:
                stack.append(temp[-1])

        return stack
相关推荐
KIDAKN1 小时前
JavaEE->多线程2
java·算法·java-ee
uwvwko1 小时前
数据结构学习——树的储存结构
数据库·学习·算法·
森焱森1 小时前
基于GD32F4XX串口环形缓冲区,北斗2.1协议,RD模块数据解析代码
c语言·单片机·算法·架构
秋风&萧瑟2 小时前
【C++】C++枚举、const、static的用法
c++·算法
玉~你还好吗2 小时前
【LeetCode#第228题】汇总区间(简单题)
算法·leetcode
_周游2 小时前
【数据结构】_二叉树部分特征统计
数据结构·算法
零点BUG2 小时前
推荐系统召回机制全景指南:从经典算法到工业级实践
算法
双叶8362 小时前
(C++)素数的判断(C++教学)(C语言)
c语言·开发语言·数据结构·c++·算法
风靡晚4 小时前
汽车毫米波雷达增强感知:基于相干扩展和高级 IAA 的超分辨率距离和角度估计.
算法·汽车·信息与通信·信号处理·fmcw
用户94996677484034 小时前
计算机视觉101:从算法到部署
算法