Binary Tree Right Side View

Problem

Given the root of a binary tree, imagine yourself standing on the right side of it, return the values of the nodes you can see ordered from top to bottom.

Example 1:

复制代码
Input: root = [1,2,3,null,5,null,4]
Output: [1,3,4]

Example 2:

复制代码
Input: root = [1,null,3]
Output: [1,3]

Example 3:

复制代码
Input: root = []
Output: []

Intuition

The task is to imagine standing on the right side of a binary tree and returning the values of the nodes visible from that perspective. The intuition is to perform a level order traversal of the binary tree and, for each level, only consider the value of the rightmost node, as that would be the one visible from the right side.

Approach

Initialization:

Check if the root is None. If so, return an empty list since there are no nodes to traverse.

Breadth-First Search (BFS):

Use a queue (in this case, a deque) to perform a breadth-first traversal of the binary tree.

Initialize the queue with the root node.

Right Side View:

While the queue is not empty:

For each level, create a temporary list (temp) to store the values of nodes.

Process all nodes at the current level:

Pop the front node from the queue.

Enqueue its left and right children (if any).

Append the value of the current node to the temp list.

If the temp list is not empty, append the value of the rightmost node to the final result (stack).

Return Result:

Return the final result, which is a list of values representing the nodes visible from the right side.

Complexity

  • Time complexity:

The time complexity is O(n), where n is the number of nodes in the binary tree. Each node is visited exactly once during the traversal.

  • Space complexity:

The space complexity is O(m), where m is the maximum number of nodes at any level in the binary tree. In the worst case, the maximum number of nodes at any level is the number of leaf nodes, which is at most n/2 in a balanced binary tree. Therefore, the space complexity is O(n/2), which simplifies to O(n) in big-O notation. This is because the space required to store nodes at any level scales with the number of nodes in the tree.

Code

复制代码
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def rightSideView(self, root: Optional[TreeNode]) -> List[int]:
        if not root:
            return []

        stack = [root.val]
        q = deque([root])
        while q:
            temp = []
            for _ in range(len(q)):
                node = q.popleft()
                if node.left:
                    q.append(node.left)
                    temp.append(node.left.val)
                if node.right:
                    q.append(node.right)
                    temp.append(node.right.val)

            if temp:
                stack.append(temp[-1])

        return stack
相关推荐
CoderCodingNo7 小时前
【GESP】C++五级练习题 luogu-P1865 A % B Problem
开发语言·c++·算法
大闲在人7 小时前
7. 供应链与制造过程术语:“周期时间”
算法·供应链管理·智能制造·工业工程
小熳芋8 小时前
443. 压缩字符串-python-双指针
算法
Charlie_lll8 小时前
力扣解题-移动零
后端·算法·leetcode
chaser&upper8 小时前
矩阵革命:在 AtomGit 解码 CANN ops-nn 如何构建 AIGC 的“线性基石”
程序人生·算法
weixin_499771558 小时前
C++中的组合模式
开发语言·c++·算法
iAkuya8 小时前
(leetcode)力扣100 62N皇后问题 (普通回溯(使用set存储),位运算回溯)
算法·leetcode·职场和发展
近津薪荼8 小时前
dfs专题5——(二叉搜索树中第 K 小的元素)
c++·学习·算法·深度优先
xiaoye-duck8 小时前
吃透 C++ STL list:从基础使用到特性对比,解锁链表容器高效用法
c++·算法·stl
松☆8 小时前
CANN与大模型推理:在边缘端高效运行7B参数语言模型的实践指南
人工智能·算法·语言模型