Binary Tree Right Side View

Problem

Given the root of a binary tree, imagine yourself standing on the right side of it, return the values of the nodes you can see ordered from top to bottom.

Example 1:

复制代码
Input: root = [1,2,3,null,5,null,4]
Output: [1,3,4]

Example 2:

复制代码
Input: root = [1,null,3]
Output: [1,3]

Example 3:

复制代码
Input: root = []
Output: []

Intuition

The task is to imagine standing on the right side of a binary tree and returning the values of the nodes visible from that perspective. The intuition is to perform a level order traversal of the binary tree and, for each level, only consider the value of the rightmost node, as that would be the one visible from the right side.

Approach

Initialization:

Check if the root is None. If so, return an empty list since there are no nodes to traverse.

Breadth-First Search (BFS):

Use a queue (in this case, a deque) to perform a breadth-first traversal of the binary tree.

Initialize the queue with the root node.

Right Side View:

While the queue is not empty:

For each level, create a temporary list (temp) to store the values of nodes.

Process all nodes at the current level:

Pop the front node from the queue.

Enqueue its left and right children (if any).

Append the value of the current node to the temp list.

If the temp list is not empty, append the value of the rightmost node to the final result (stack).

Return Result:

Return the final result, which is a list of values representing the nodes visible from the right side.

Complexity

  • Time complexity:

The time complexity is O(n), where n is the number of nodes in the binary tree. Each node is visited exactly once during the traversal.

  • Space complexity:

The space complexity is O(m), where m is the maximum number of nodes at any level in the binary tree. In the worst case, the maximum number of nodes at any level is the number of leaf nodes, which is at most n/2 in a balanced binary tree. Therefore, the space complexity is O(n/2), which simplifies to O(n) in big-O notation. This is because the space required to store nodes at any level scales with the number of nodes in the tree.

Code

复制代码
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def rightSideView(self, root: Optional[TreeNode]) -> List[int]:
        if not root:
            return []

        stack = [root.val]
        q = deque([root])
        while q:
            temp = []
            for _ in range(len(q)):
                node = q.popleft()
                if node.left:
                    q.append(node.left)
                    temp.append(node.left.val)
                if node.right:
                    q.append(node.right)
                    temp.append(node.right.val)

            if temp:
                stack.append(temp[-1])

        return stack
相关推荐
neardi临滴科技3 分钟前
从算法逻辑到芯端落地:YOLO 目标检测的进化与瑞芯微实践
算法·yolo·目标检测
小雨下雨的雨3 分钟前
Flutter跨平台开发实战:鸿蒙系列-循环交互艺术系列——瀑布流:不规则网格的循环排布算法
算法·flutter·华为·交互·harmonyos·鸿蒙系统
小雨下雨的雨5 分钟前
Flutter跨平台开发实战: 鸿蒙与循环交互艺术:跑马灯的无极滚动算法
算法·flutter·华为·交互·harmonyos·鸿蒙
NAGNIP8 小时前
一文搞懂机器学习中的特征降维!
算法·面试
NAGNIP8 小时前
一文搞懂机器学习中的特征构造!
算法·面试
Learn Beyond Limits9 小时前
解构语义:从词向量到神经分类|Decoding Semantics: Word Vectors and Neural Classification
人工智能·算法·机器学习·ai·分类·数据挖掘·nlp
你怎么知道我是队长9 小时前
C语言---typedef
c语言·c++·算法
Qhumaing10 小时前
C++学习:【PTA】数据结构 7-1 实验7-1(最小生成树-Prim算法)
c++·学习·算法
Z1Jxxx12 小时前
01序列01序列
开发语言·c++·算法