Binary Tree Right Side View

Problem

Given the root of a binary tree, imagine yourself standing on the right side of it, return the values of the nodes you can see ordered from top to bottom.

Example 1:

复制代码
Input: root = [1,2,3,null,5,null,4]
Output: [1,3,4]

Example 2:

复制代码
Input: root = [1,null,3]
Output: [1,3]

Example 3:

复制代码
Input: root = []
Output: []

Intuition

The task is to imagine standing on the right side of a binary tree and returning the values of the nodes visible from that perspective. The intuition is to perform a level order traversal of the binary tree and, for each level, only consider the value of the rightmost node, as that would be the one visible from the right side.

Approach

Initialization:

Check if the root is None. If so, return an empty list since there are no nodes to traverse.

Breadth-First Search (BFS):

Use a queue (in this case, a deque) to perform a breadth-first traversal of the binary tree.

Initialize the queue with the root node.

Right Side View:

While the queue is not empty:

For each level, create a temporary list (temp) to store the values of nodes.

Process all nodes at the current level:

Pop the front node from the queue.

Enqueue its left and right children (if any).

Append the value of the current node to the temp list.

If the temp list is not empty, append the value of the rightmost node to the final result (stack).

Return Result:

Return the final result, which is a list of values representing the nodes visible from the right side.

Complexity

  • Time complexity:

The time complexity is O(n), where n is the number of nodes in the binary tree. Each node is visited exactly once during the traversal.

  • Space complexity:

The space complexity is O(m), where m is the maximum number of nodes at any level in the binary tree. In the worst case, the maximum number of nodes at any level is the number of leaf nodes, which is at most n/2 in a balanced binary tree. Therefore, the space complexity is O(n/2), which simplifies to O(n) in big-O notation. This is because the space required to store nodes at any level scales with the number of nodes in the tree.

Code

复制代码
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def rightSideView(self, root: Optional[TreeNode]) -> List[int]:
        if not root:
            return []

        stack = [root.val]
        q = deque([root])
        while q:
            temp = []
            for _ in range(len(q)):
                node = q.popleft()
                if node.left:
                    q.append(node.left)
                    temp.append(node.left.val)
                if node.right:
                    q.append(node.right)
                    temp.append(node.right.val)

            if temp:
                stack.append(temp[-1])

        return stack
相关推荐
AI 嗯啦32 分钟前
数据结构深度解析:二叉树的基本原理
数据结构·算法
和光同尘@1 小时前
66. 加一 (编程基础0到1)(Leetcode)
数据结构·人工智能·算法·leetcode·职场和发展
CHEN5_021 小时前
leetcode-hot100 11.盛水最多容器
java·算法·leetcode
songx_991 小时前
leetcode18(无重复字符的最长子串)
java·算法·leetcode
max5006002 小时前
实时多模态电力交易决策系统:设计与实现
图像处理·人工智能·深度学习·算法·音视频
其古寺2 小时前
贪心算法与动态规划:数学原理、实现与优化
算法·贪心算法·动态规划
rit84324993 小时前
基于灰狼算法(GWO)优化支持向量回归机(SVR)参数C和γ的实现
c语言·算法·回归
蒋士峰DBA修行之路3 小时前
实验五 静态剪枝
数据库·算法·剪枝
蒋士峰DBA修行之路3 小时前
实验六 动态剪枝
数据库·算法·剪枝
Tim_104 小时前
【算法专题训练】20、LRU 缓存
c++·算法·缓存