Binary Tree Right Side View

Problem

Given the root of a binary tree, imagine yourself standing on the right side of it, return the values of the nodes you can see ordered from top to bottom.

Example 1:

复制代码
Input: root = [1,2,3,null,5,null,4]
Output: [1,3,4]

Example 2:

复制代码
Input: root = [1,null,3]
Output: [1,3]

Example 3:

复制代码
Input: root = []
Output: []

Intuition

The task is to imagine standing on the right side of a binary tree and returning the values of the nodes visible from that perspective. The intuition is to perform a level order traversal of the binary tree and, for each level, only consider the value of the rightmost node, as that would be the one visible from the right side.

Approach

Initialization:

Check if the root is None. If so, return an empty list since there are no nodes to traverse.

Breadth-First Search (BFS):

Use a queue (in this case, a deque) to perform a breadth-first traversal of the binary tree.

Initialize the queue with the root node.

Right Side View:

While the queue is not empty:

For each level, create a temporary list (temp) to store the values of nodes.

Process all nodes at the current level:

Pop the front node from the queue.

Enqueue its left and right children (if any).

Append the value of the current node to the temp list.

If the temp list is not empty, append the value of the rightmost node to the final result (stack).

Return Result:

Return the final result, which is a list of values representing the nodes visible from the right side.

Complexity

  • Time complexity:

The time complexity is O(n), where n is the number of nodes in the binary tree. Each node is visited exactly once during the traversal.

  • Space complexity:

The space complexity is O(m), where m is the maximum number of nodes at any level in the binary tree. In the worst case, the maximum number of nodes at any level is the number of leaf nodes, which is at most n/2 in a balanced binary tree. Therefore, the space complexity is O(n/2), which simplifies to O(n) in big-O notation. This is because the space required to store nodes at any level scales with the number of nodes in the tree.

Code

复制代码
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def rightSideView(self, root: Optional[TreeNode]) -> List[int]:
        if not root:
            return []

        stack = [root.val]
        q = deque([root])
        while q:
            temp = []
            for _ in range(len(q)):
                node = q.popleft()
                if node.left:
                    q.append(node.left)
                    temp.append(node.left.val)
                if node.right:
                    q.append(node.right)
                    temp.append(node.right.val)

            if temp:
                stack.append(temp[-1])

        return stack
相关推荐
WolfGang00732118 分钟前
代码随想录算法训练营Day27 | 56.合并区间、738.单调递增的数字、968.监控二叉树
算法
信奥卷王1 小时前
2025年9月GESPC++三级真题解析(含视频)
开发语言·c++·算法
努力学习的小廉1 小时前
我爱学算法之—— BFS之FLoodFill算法
算法·宽度优先
天选之女wow1 小时前
【Hard——Day8】65.有效数字、68.文本左右对齐、76.最小覆盖子串
linux·运维·redis·算法·leetcode
AI大模型学徒1 小时前
NLP基础(八)_马尔可夫模型
算法·机器学习·自然语言处理·nlp·概率论·马尔可夫模型
前端小L2 小时前
图论专题(十八):“逆向”拓扑排序——寻找图中的「最终安全状态」
数据结构·算法·安全·深度优先·图论·宽度优先
前端小L2 小时前
图论专题(十七):从“判定”到“构造”——生成一份完美的「课程表 II」
算法·矩阵·深度优先·图论·宽度优先
qq_433554542 小时前
C++ 稀疏表
开发语言·c++·算法
小白程序员成长日记3 小时前
2025.11.21 力扣每日一题
算法·leetcode·职场和发展
小年糕是糕手3 小时前
【C++】C++入门 -- inline、nullptr
linux·开发语言·jvm·数据结构·c++·算法·排序算法