OpenCV之图像匹配与定位

利用图像特征的keypoints和descriptor来实现图像的匹配与定位。图像匹配算法主要有暴力匹配和FLANN匹配,而图像定位是通过图像匹配结果来反向查询它们在目标图片中的具体坐标位置。

以QQ登录界面为例,将整个QQ登录界面保存为QQ.png文件,QQ登录界面是在计算机的1920×1080分辨率下截图保存的;再把计算机的分辨率改为1280×1024,将QQ登录界面的用户头像保存并对图像进行旋转处理,最后保存为portrait.png文件

两张图片文件的像素分辨率和图像位置都发生了变化,如果要通过portrait.png去匹配定位它在QQ.png所在的坐标位置,自动化工具PyAutoGUI肯定是无法实现的。若想解决这种复杂的图像识别问题,只能使用计算机视觉技术。在OpenCV里面,QQ.png称为目标图像,portrait.png称为训练图像

实现过程:

(1)分别对两张图片的图像进行特征检测,图像特征检测算法有SURF、SIFT和ORB,两张图片必须使用同一种特征检测算法。

(2)根据两张图片的特征描述符(即变量descriptor)进行匹配,匹配算法有暴力匹配和FLANN匹配,不同的匹配算法所产生的匹配结果存在一定的差异。

(3)对两张图片的匹配结果进行数据清洗,去除一些错误匹配。错误匹配是由于在图片不同区域内出现多处相似的特征而导致的。

(4)在匹配结果里抽取中位数,利用中位数来反向查询它在目标图片所对应像素点的坐标位置,这个坐标位置也是自动化开发中使用的图片定位坐标。

线面是让chatgpt把上面图片里的代码修改为了c++。没仔细看是否正确。

cpp 复制代码
#include <opencv2/opencv.hpp>
#include <vector>

int main() {
    // Load images
    cv::Mat img1 = cv::imread("QQ.png");
    cv::Mat img2 = cv::imread("portrait.png");

    // Use SIFT algorithm to get keypoints and descriptors
    cv::Ptr<cv::SIFT> sift = cv::SIFT::create();
    std::vector<cv::KeyPoint> kp1, kp2;
    cv::Mat des1, des2;
    sift->detectAndCompute(img1, cv::noArray(), kp1, des1);
    sift->detectAndCompute(img2, cv::noArray(), kp2, des2);

    // Define FLANN matcher
    cv::Ptr<cv::FlannBasedMatcher> flann = cv::FlannBasedMatcher::create();
    std::vector<std::vector<cv::DMatch>> matches;
    flann->knnMatch(des1, des2, matches, 2);

    // Filter good matches
    std::vector<cv::DMatch> goodMatches;
    for (size_t i = 0; i < matches.size(); ++i) {
        if (matches[i][0].distance < 0.5 * matches[i][1].distance) {
            goodMatches.push_back(matches[i][0]);
        }
    }

    // Get coordinates of a point
    size_t index = goodMatches.size() / 2;
    float x = kp1[goodMatches[index].queryIdx].pt.x;
    float y = kp1[goodMatches[index].queryIdx].pt.y;

    // Draw rectangle on img1 at (x, y) and display image
    cv::rectangle(img1, cv::Point2f(x, y), cv::Point2f(x + 5, y + 5), cv::Scalar(0, 255, 0), 2);
    cv::imshow("QQ", img1);
    cv::waitKey(0);
    cv::destroyAllWindows();

    return 0;
}
相关推荐
一切皆有可能!!1 小时前
实践篇:利用ragas在自己RAG上实现LLM评估②
人工智能·语言模型
月白风清江有声3 小时前
爆炸仿真的学习日志
人工智能
华奥系科技4 小时前
智慧水务发展迅猛:从物联网架构到AIoT系统的跨越式升级
人工智能·物联网·智慧城市
R²AIN SUITE4 小时前
MCP协议重构AI Agent生态:万能插槽如何终结工具孤岛?
人工智能
b***25114 小时前
动力电池点焊机:驱动电池焊接高效与可靠的核心力量|比斯特自动化
人工智能·科技·自动化
Gyoku Mint5 小时前
机器学习×第二卷:概念下篇——她不再只是模仿,而是开始决定怎么靠近你
人工智能·python·算法·机器学习·pandas·ai编程·matplotlib
小和尚同志5 小时前
通俗易懂的 MCP 概念入门
人工智能·aigc
dudly5 小时前
大语言模型评测体系全解析(下篇):工具链、学术前沿与实战策略
人工智能·语言模型
zzlyx995 小时前
AI大数据模型如何与thingsboard物联网结合
人工智能·物联网
说私域6 小时前
定制开发开源AI智能名片驱动下的海报工厂S2B2C商城小程序运营策略——基于社群口碑传播与子市场细分的实证研究
人工智能·小程序·开源·零售