OpenCV之图像匹配与定位

利用图像特征的keypoints和descriptor来实现图像的匹配与定位。图像匹配算法主要有暴力匹配和FLANN匹配,而图像定位是通过图像匹配结果来反向查询它们在目标图片中的具体坐标位置。

以QQ登录界面为例,将整个QQ登录界面保存为QQ.png文件,QQ登录界面是在计算机的1920×1080分辨率下截图保存的;再把计算机的分辨率改为1280×1024,将QQ登录界面的用户头像保存并对图像进行旋转处理,最后保存为portrait.png文件

两张图片文件的像素分辨率和图像位置都发生了变化,如果要通过portrait.png去匹配定位它在QQ.png所在的坐标位置,自动化工具PyAutoGUI肯定是无法实现的。若想解决这种复杂的图像识别问题,只能使用计算机视觉技术。在OpenCV里面,QQ.png称为目标图像,portrait.png称为训练图像

实现过程:

(1)分别对两张图片的图像进行特征检测,图像特征检测算法有SURF、SIFT和ORB,两张图片必须使用同一种特征检测算法。

(2)根据两张图片的特征描述符(即变量descriptor)进行匹配,匹配算法有暴力匹配和FLANN匹配,不同的匹配算法所产生的匹配结果存在一定的差异。

(3)对两张图片的匹配结果进行数据清洗,去除一些错误匹配。错误匹配是由于在图片不同区域内出现多处相似的特征而导致的。

(4)在匹配结果里抽取中位数,利用中位数来反向查询它在目标图片所对应像素点的坐标位置,这个坐标位置也是自动化开发中使用的图片定位坐标。

线面是让chatgpt把上面图片里的代码修改为了c++。没仔细看是否正确。

cpp 复制代码
#include <opencv2/opencv.hpp>
#include <vector>

int main() {
    // Load images
    cv::Mat img1 = cv::imread("QQ.png");
    cv::Mat img2 = cv::imread("portrait.png");

    // Use SIFT algorithm to get keypoints and descriptors
    cv::Ptr<cv::SIFT> sift = cv::SIFT::create();
    std::vector<cv::KeyPoint> kp1, kp2;
    cv::Mat des1, des2;
    sift->detectAndCompute(img1, cv::noArray(), kp1, des1);
    sift->detectAndCompute(img2, cv::noArray(), kp2, des2);

    // Define FLANN matcher
    cv::Ptr<cv::FlannBasedMatcher> flann = cv::FlannBasedMatcher::create();
    std::vector<std::vector<cv::DMatch>> matches;
    flann->knnMatch(des1, des2, matches, 2);

    // Filter good matches
    std::vector<cv::DMatch> goodMatches;
    for (size_t i = 0; i < matches.size(); ++i) {
        if (matches[i][0].distance < 0.5 * matches[i][1].distance) {
            goodMatches.push_back(matches[i][0]);
        }
    }

    // Get coordinates of a point
    size_t index = goodMatches.size() / 2;
    float x = kp1[goodMatches[index].queryIdx].pt.x;
    float y = kp1[goodMatches[index].queryIdx].pt.y;

    // Draw rectangle on img1 at (x, y) and display image
    cv::rectangle(img1, cv::Point2f(x, y), cv::Point2f(x + 5, y + 5), cv::Scalar(0, 255, 0), 2);
    cv::imshow("QQ", img1);
    cv::waitKey(0);
    cv::destroyAllWindows();

    return 0;
}
相关推荐
Blossom.1181 小时前
使用Python实现简单的人工智能聊天机器人
开发语言·人工智能·python·低代码·数据挖掘·机器人·云计算
科技小E1 小时前
EasyRTC嵌入式音视频通信SDK打造带屏IPC全场景实时通信解决方案
人工智能·音视频
ayiya_Oese2 小时前
[模型部署] 3. 性能优化
人工智能·python·深度学习·神经网络·机器学习·性能优化
仙人掌_lz2 小时前
机器学习与人工智能:NLP分词与文本相似度分析
人工智能·机器学习·自然语言处理
jndingxin2 小时前
OpenCV CUDA模块中矩阵操作------归一化与变换操作
人工智能·opencv
ZStack开发者社区2 小时前
云轴科技ZStack官网上线Support AI,智能助手助力高效技术支持
人工智能·科技
每天都要写算法(努力版)2 小时前
【神经网络与深度学习】通俗易懂的介绍非凸优化问题、梯度消失、梯度爆炸、模型的收敛、模型的发散
人工智能·深度学习·神经网络
Blossom.1182 小时前
Web3.0:互联网的去中心化未来
人工智能·驱动开发·深度学习·web3·去中心化·区块链·交互
kyle~2 小时前
计算机视觉---目标检测(Object Detecting)概览
人工智能·目标检测·计算机视觉
hao_wujing2 小时前
YOLOv8在单目向下多车辆目标检测中的应用
人工智能·yolo·目标检测