OpenCV之图像匹配与定位

利用图像特征的keypoints和descriptor来实现图像的匹配与定位。图像匹配算法主要有暴力匹配和FLANN匹配,而图像定位是通过图像匹配结果来反向查询它们在目标图片中的具体坐标位置。

以QQ登录界面为例,将整个QQ登录界面保存为QQ.png文件,QQ登录界面是在计算机的1920×1080分辨率下截图保存的;再把计算机的分辨率改为1280×1024,将QQ登录界面的用户头像保存并对图像进行旋转处理,最后保存为portrait.png文件

两张图片文件的像素分辨率和图像位置都发生了变化,如果要通过portrait.png去匹配定位它在QQ.png所在的坐标位置,自动化工具PyAutoGUI肯定是无法实现的。若想解决这种复杂的图像识别问题,只能使用计算机视觉技术。在OpenCV里面,QQ.png称为目标图像,portrait.png称为训练图像

实现过程:

(1)分别对两张图片的图像进行特征检测,图像特征检测算法有SURF、SIFT和ORB,两张图片必须使用同一种特征检测算法。

(2)根据两张图片的特征描述符(即变量descriptor)进行匹配,匹配算法有暴力匹配和FLANN匹配,不同的匹配算法所产生的匹配结果存在一定的差异。

(3)对两张图片的匹配结果进行数据清洗,去除一些错误匹配。错误匹配是由于在图片不同区域内出现多处相似的特征而导致的。

(4)在匹配结果里抽取中位数,利用中位数来反向查询它在目标图片所对应像素点的坐标位置,这个坐标位置也是自动化开发中使用的图片定位坐标。

线面是让chatgpt把上面图片里的代码修改为了c++。没仔细看是否正确。

cpp 复制代码
#include <opencv2/opencv.hpp>
#include <vector>

int main() {
    // Load images
    cv::Mat img1 = cv::imread("QQ.png");
    cv::Mat img2 = cv::imread("portrait.png");

    // Use SIFT algorithm to get keypoints and descriptors
    cv::Ptr<cv::SIFT> sift = cv::SIFT::create();
    std::vector<cv::KeyPoint> kp1, kp2;
    cv::Mat des1, des2;
    sift->detectAndCompute(img1, cv::noArray(), kp1, des1);
    sift->detectAndCompute(img2, cv::noArray(), kp2, des2);

    // Define FLANN matcher
    cv::Ptr<cv::FlannBasedMatcher> flann = cv::FlannBasedMatcher::create();
    std::vector<std::vector<cv::DMatch>> matches;
    flann->knnMatch(des1, des2, matches, 2);

    // Filter good matches
    std::vector<cv::DMatch> goodMatches;
    for (size_t i = 0; i < matches.size(); ++i) {
        if (matches[i][0].distance < 0.5 * matches[i][1].distance) {
            goodMatches.push_back(matches[i][0]);
        }
    }

    // Get coordinates of a point
    size_t index = goodMatches.size() / 2;
    float x = kp1[goodMatches[index].queryIdx].pt.x;
    float y = kp1[goodMatches[index].queryIdx].pt.y;

    // Draw rectangle on img1 at (x, y) and display image
    cv::rectangle(img1, cv::Point2f(x, y), cv::Point2f(x + 5, y + 5), cv::Scalar(0, 255, 0), 2);
    cv::imshow("QQ", img1);
    cv::waitKey(0);
    cv::destroyAllWindows();

    return 0;
}
相关推荐
AndrewHZ29 分钟前
【图像处理基石】如何入门色彩评估?
图像处理·人工智能·深度学习·色彩科学·hvs·色彩评估·颜色工程
TomatoSCI29 分钟前
聚类的可视化选择:PCA / t-SNE丨TomatoSCI分析日记
人工智能·机器学习
大咖分享课31 分钟前
深度剖析:最新发布的ChatGPT Agent 技术架构与应用场景
人工智能·openai·智能助手·ai代理·chatgpt agent·自主任务执行
lucky_lyovo41 分钟前
卷积神经网络--网络性能提升
人工智能·神经网络·cnn
liliangcsdn1 小时前
smolagents - 如何在mac用agents做简单算术题
人工智能·macos·prompt
nju_spy1 小时前
周志华《机器学习导论》第8章 集成学习 Ensemble Learning
人工智能·随机森林·机器学习·集成学习·boosting·bagging·南京大学
静心问道1 小时前
TrOCR: 基于Transformer的光学字符识别方法,使用预训练模型
人工智能·深度学习·transformer·多模态
说私域1 小时前
基于开源AI大模型、AI智能名片与S2B2C商城小程序源码的用户价值引导与核心用户沉淀策略研究
人工智能·开源
亲持红叶1 小时前
GLU 变种:ReGLU 、 GEGLU 、 SwiGLU
人工智能·深度学习·神经网络·激活函数
说私域1 小时前
线上协同办公时代:以开源AI大模型等工具培养网感,拥抱职业变革
人工智能·开源