A novel local-global dependency deep learning model for soil mapping

程哥的一区文章

"A novel local-global dependency deep learning model for soil mapping" (Li 和 Zhang, 2022, pp. -) (pdf)

研究问题:"工 程 " discrete" 特征不能反映环境协变量 之间 的相 互作 用或 依赖 关系" (pdf)

预测的对象是土壤质地的预测。属于step1里面的对于变量的选择。

研究方法:

"设 计 了 一 种 协 变 量 重 组 方 法 来 生 成 多 组 输 入 ; 随 后 , 采 用 长 短 期 记 忆 模 型 (L S TM) 提 取 协 变 量 之 间 的 相 互 依 赖 关 系 。 最 后 , 使 用 全 连 接 层 生 成 预 测 。" (pdf)

然后根据r的相关性,选择排序最相关的,放进去。这个第一种方法,第二种方法是,最相关的a放最后,与a最相关的放最后第二···。

然后这个再根据相关性,比如协变量B,它的相关性就是BDEAC。将它重组之后的排序BDEAC和原始的的BCEDA进行全链接。进行土壤质地的预测。

研究区域:中国

数据集:"本研究的土壤质地数据来源于第二次全国土壤调查" (Li 和 Zhang, 2022, p. 5) (pdf) 🔤本研究的土壤质地数据来源于第二次全国土壤调查🔤

本文的贡献:

"1.提 出 一种 协变 量 重组 方法 , 在预 测模 型 中生 成多 组 输入 ,将 最相 关或次级相关的环境协变量放在相邻的位置。

2.采用多个 LST M 模型提取协变量之间的相互依赖关系,反映环境 协变量之间的相互作用,随后使用全连接层 (FCN)建立土壤性质与 环境协变量之间的关系。" (Li 和 Zhang, 2022, p. 4)

"3.进行 profile-to-profile 实验来评估所提出的模型,并将其与基于 RF 和 cnn 的模型在不同土壤深度下进行比较。

4.探 索 所提模型的不同结构对改善土壤纹理预测的影响。" (Li 和 Zhang, 2022, p. 4)

协变量相关性。

"我们假设如果相邻协变量之间不存在相 关 性, 它可能 会在 反向 传播过 程中 面临梯 度消 失问 题,并 进一 步影 响预测性能(Fei和 T an, 2018)。

为了缓解这个问题,提出了第二种重 组方法(称为 LGD-LST M)。我们还将最相关的协变量 (简称 A)放在 了 这个 方法的 最后 一个 维度。

我们 没有选 择第 二个 相关的 协变 量, 而是与 A 计算其他协变量中最相关的一个,并将其放置在倒数第二 个 维度 。依次 类推 其他 协变量 。

通 过这种 方式 ,我 们希望 确保 相邻 的 协 变 量 既具有相关 性,又能缓解 梯度消失问题 。" (Li 和 Zhang, 2022, p. 9)

评估指标:

R2,Rmse,KGE

还做了不确定性分析。

总结:

  • 预测的对象是土壤质地的预测。属于landbench里step1里面的对于变量的选择。
  • 设 计 了 一 种 协 变 量 重 组 方 法 来 生 成 多 组 输 入 ; 随 后 , 采 用 长 短 期 记 忆 模 型 (L S TM) 提 取 协 变 量 之 间 的 相 互 依 赖 关 系 。 最 后 , 使 用 全 连 接 层 生 成 预 测
相关推荐
吴佳浩1 小时前
大模型量化部署终极指南:让700亿参数的AI跑进你的显卡
人工智能·python·gpu
跨境卫士苏苏2 小时前
亚马逊AI广告革命:告别“猜心”,迎接“共创”时代
大数据·人工智能·算法·亚马逊·防关联
珠海西格电力2 小时前
零碳园区工业厂房光伏一体化(BIPV)基础规划
大数据·运维·人工智能·智慧城市·能源
土星云SaturnCloud3 小时前
不止是替代:从机械风扇的可靠性困局,看服务器散热技术新范式
服务器·网络·人工智能·ai
小马爱打代码3 小时前
Spring AI:搭建自定义 MCP Server:获取 QQ 信息
java·人工智能·spring
你们补药再卷啦3 小时前
ai(三)环境资源管理
人工智能·语言模型·电脑
飞哥数智坊3 小时前
GLM-4.6V 初探:国产 AI 能边写边自己配图了
人工智能·chatglm (智谱)
杰克逊的日记4 小时前
大模型的原理是什么
人工智能·大模型·gpu·算力
智算菩萨4 小时前
AI在智能制造中的落地:从预测维护到自适应生产调度
人工智能·制造
云和数据.ChenGuang4 小时前
AI 算力竞争下的昇腾硬件定位
人工智能