A novel local-global dependency deep learning model for soil mapping

程哥的一区文章

"A novel local-global dependency deep learning model for soil mapping" (Li 和 Zhang, 2022, pp. -) (pdf)

研究问题:"工 程 " discrete" 特征不能反映环境协变量 之间 的相 互作 用或 依赖 关系" (pdf)

预测的对象是土壤质地的预测。属于step1里面的对于变量的选择。

研究方法:

"设 计 了 一 种 协 变 量 重 组 方 法 来 生 成 多 组 输 入 ; 随 后 , 采 用 长 短 期 记 忆 模 型 (L S TM) 提 取 协 变 量 之 间 的 相 互 依 赖 关 系 。 最 后 , 使 用 全 连 接 层 生 成 预 测 。" (pdf)

然后根据r的相关性,选择排序最相关的,放进去。这个第一种方法,第二种方法是,最相关的a放最后,与a最相关的放最后第二···。

然后这个再根据相关性,比如协变量B,它的相关性就是BDEAC。将它重组之后的排序BDEAC和原始的的BCEDA进行全链接。进行土壤质地的预测。

研究区域:中国

数据集:"本研究的土壤质地数据来源于第二次全国土壤调查" (Li 和 Zhang, 2022, p. 5) (pdf) 🔤本研究的土壤质地数据来源于第二次全国土壤调查🔤

本文的贡献:

"1.提 出 一种 协变 量 重组 方法 , 在预 测模 型 中生 成多 组 输入 ,将 最相 关或次级相关的环境协变量放在相邻的位置。

2.采用多个 LST M 模型提取协变量之间的相互依赖关系,反映环境 协变量之间的相互作用,随后使用全连接层 (FCN)建立土壤性质与 环境协变量之间的关系。" (Li 和 Zhang, 2022, p. 4)

"3.进行 profile-to-profile 实验来评估所提出的模型,并将其与基于 RF 和 cnn 的模型在不同土壤深度下进行比较。

4.探 索 所提模型的不同结构对改善土壤纹理预测的影响。" (Li 和 Zhang, 2022, p. 4)

协变量相关性。

"我们假设如果相邻协变量之间不存在相 关 性, 它可能 会在 反向 传播过 程中 面临梯 度消 失问 题,并 进一 步影 响预测性能(Fei和 T an, 2018)。

为了缓解这个问题,提出了第二种重 组方法(称为 LGD-LST M)。我们还将最相关的协变量 (简称 A)放在 了 这个 方法的 最后 一个 维度。

我们 没有选 择第 二个 相关的 协变 量, 而是与 A 计算其他协变量中最相关的一个,并将其放置在倒数第二 个 维度 。依次 类推 其他 协变量 。

通 过这种 方式 ,我 们希望 确保 相邻 的 协 变 量 既具有相关 性,又能缓解 梯度消失问题 。" (Li 和 Zhang, 2022, p. 9)

评估指标:

R2,Rmse,KGE

还做了不确定性分析。

总结:

  • 预测的对象是土壤质地的预测。属于landbench里step1里面的对于变量的选择。
  • 设 计 了 一 种 协 变 量 重 组 方 法 来 生 成 多 组 输 入 ; 随 后 , 采 用 长 短 期 记 忆 模 型 (L S TM) 提 取 协 变 量 之 间 的 相 互 依 赖 关 系 。 最 后 , 使 用 全 连 接 层 生 成 预 测
相关推荐
ZOMI酱19 分钟前
【AI系统】模型转换基本介绍
人工智能
CodeDevMaster31 分钟前
LangChain之检索增强生成RAG
人工智能·python·llm
数学人学c语言1 小时前
yolov11剪枝
pytorch·python·深度学习
今天又是学习1 小时前
深度学习5
人工智能·深度学习
新加坡内哥谈技术2 小时前
RAG架构类型
大数据·人工智能·语言模型·chatgpt
Topstip2 小时前
iOS 19 重大更新泄露,将带来更“聪明”的 Siri 挑战 ChatGPT
人工智能·ios·ai·chatgpt
Nerinic2 小时前
深度学习基础1
人工智能·深度学习
数字扫地僧2 小时前
深度学习与知识图谱嵌入的结合:从理论到实践
人工智能·深度学习·知识图谱
真理Eternal2 小时前
手搓人工智能—聚类分析(下)谱系聚类与K-mean聚类
人工智能·机器学习
ZOMI酱3 小时前
【AI系统】昇腾 AI 架构介绍
人工智能·架构