Yolov5水果分类识别+pyqt交互式界面

Yolov5 Fruits Detector

  • Yolov5 是一种先进的目标检测算法,可以应用于水果分类识别任务。结合 PyQT
    框架,可以创建一个交互式界面,使用户能够方便地上传图片并获取水果分类结果。以下将详细阐述 Yolov5 水果分类识别和 PyQT
    交互式界面的实现。
  • Yolov5 是由 Ultralytics
    公司开发的一种基于深度学习的目标检测算法,它采用了一种称为单阶段目标检测的方法,具有高准确率和实时性的特点。在水果分类识别任务中,Yolov5
    可以检测图像中的水果,并将其分类为不同的类别,例如苹果、香蕉、橙子等。
  • 为了实现 Yolov5 水果分类识别的交互式界面,可以使用 PyQT 框架进行开发。PyQT 是一个功能强大且易于使用的 Python
    GUI 开发工具包,它提供了丰富的界面组件和布局选项,可以轻松创建用户友好的界面。
  • 在界面设计方面,可以使用 PyQT 创建一个包含上传图片按钮和显示分类结果的窗口。当用户点击上传图片按钮时,可以调用 Yolov5
    模型对上传的图片进行识别,并将分类结果显示在界面上。同时,还可以添加其他功能,如清除界面、保存结果等。

要求

  • 可以使用 Linux 或者 Windows。我们推荐使用 Linux 以获得更好的性能。
  • 需要安装 Python 3.6+ 和 PyTorch 1.7+。

安装

运行以下命令来安装依赖项:

复制代码
pip install -r requirements.txt
  • 下载模型,请使用此链接:https://drive.google.com/file/d/1W6qZeutnqnp3YX9w4iYgR44xsoi_64ff/view?usp=sharing
  • 将下载的文件放置在 weights 目录下

代码

运行此部分检测ui界面代码

复制代码
import sys
import os

from PySide6.QtWidgets import QApplication, QWidget, QFileDialog
from PySide6.QtCore import QFile
from PySide6.QtUiTools import QUiLoader
from PySide6.QtGui import QPixmap, QImage
from PySide6.QtCore import QThread, Signal, QDir
import cv2


def convertCVImage2QtImage(cv_img):
    cv_img = cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB)
    height, width, channel = cv_img.shape
    bytesPerLine = 3 * width
    qimg = QImage(cv_img.data, width, height, bytesPerLine, QImage.Format_RGB888)
    return QPixmap.fromImage(qimg)


class ProcessImage(QThread):
    signal_show_frame = Signal(object)

    def __init__(self, fileName):
        QThread.__init__(self)
        self.fileName = fileName

        from detector import Detector
        self.detector = Detector()

    def run(self):
        self.video = cv2.VideoCapture(self.fileName)
        while True:
            valid, self.frame = self.video.read()
            if valid is not True:
                break
            self.frame = self.detector.detect(self.frame)
            self.signal_show_frame.emit(self.frame)
            cv2.waitKey(30)
        self.video.release()

    def stop(self):
        try:
            self.video.release()
        except:
            pass


class show(QThread):
    signal_show_image = Signal(object)

    def __init__(self, fileName):
        QThread.__init__(self)
        self.fileName = fileName
        self.video=cv2.VideoCapture(self.fileName)

    def run(self): 
        while True:
            valid, self.frame = self.video.read()
            if valid is not True:
                break
            self.signal_show_image.emit(self.frame)
            cv2.waitKey(30)
        self.video.release()

    def stop(self):
        try:
            self.video.release()
        except:
            pass


class MainWindow(QWidget):
    def __init__(self):
        super(MainWindow, self).__init__()
        loader = QUiLoader()
        self.ui = loader.load("ui/form.ui")
        
        self.ui.btn_browse.clicked.connect(self.getFile)
        self.ui.btn_start.clicked.connect(self.predict)

        self.ui.show()

    def getFile(self):
        self.fileName = QFileDialog.getOpenFileName(self,'Single File','C:\'','*.jpg *.mp4 *.jpeg *.png *.avi')[0]
        self.ui.txt_address.setText(str(self.fileName))
        self.show=show(self.fileName)
        self.show.signal_show_image.connect(self.show_input)
        self.show.start()
        
        
    def predict(self):
        self.process_image = ProcessImage(self.fileName)
        self.process_image.signal_show_frame.connect(self.show_output)
        self.process_image.start()

    def show_input(self, image):
        pixmap = convertCVImage2QtImage(image)
        self.ui.lbl_input.setPixmap(pixmap)

    def show_output(self, image):
        pixmap = convertCVImage2QtImage(image)
        self.ui.lbl_output.setPixmap(pixmap)

if __name__ == "__main__":
    app = QApplication(sys.argv)
    widget = MainWindow()
    sys.exit(app.exec())

运行界面

要对图像或视频进行推断,请运行以下命令:

复制代码
python main.py 

数据集:

  • 数据集可以在此链接中找到https://t.ly/NZWj
  • 在 Yolov5 水果分类识别的实现过程中,需要使用训练好的 Yolov5 模型来进行目标检测和分类。可以使用已经预训练好的 Yolov5 模型,也可以自己训练一个适用于水果分类的模型。

总结

总结起来,Yolov5 水果分类识别结合 PyQT 交互式界面可以提供一个方便用户上传图片并获取水果分类结果的工具。Yolov5 算法具有高准确率和实时性,在水果分类任务中表现出色。PyQT 框架提供了丰富的界面组件和布局选项,使得界面开发更加简单。通过 Yolov5 水果分类识别和 PyQT 交互式界面的结合,用户可以轻松地进行水果分类识别,并获得准确的分类结果。

相关推荐
B站计算机毕业设计之家6 小时前
多模态项目:Python人脸表情系统 CNN算法 神经网络+Adaboost定位+PyQt5界面 源码+文档 深度学习实战✅
python·深度学习·神经网络·opencv·yolo·计算机视觉·情绪识别
Goona_6 小时前
PyQt批量年龄计算工具:从身份证到指定日期的周岁处理
python·小程序·交互·pyqt
过往入尘土9 小时前
回归与分类算法全解析:从理论到实践
分类·数据挖掘·回归
dlraba80213 小时前
YOLO 目标检测算法全解析:原理、分类与性能指标
算法·yolo·目标检测
jllllyuz13 小时前
基于K近邻(KNN)算法的高光谱数据分类MATLAB实现
算法·matlab·分类
荼蘼15 小时前
【YOLO 模型入门】(1)一文读懂 YOLO:从核心概念到检测原理
yolo
Giser探索家18 小时前
建筑物孪生模型:重构空间数字化格局,赋能智慧城市
大数据·人工智能·算法·重构·分类·云计算·智慧城市
小关会打代码1 天前
深度学习之YOLO系列了解基本知识
人工智能·深度学习·yolo
AI视觉网奇2 天前
pyqt 触摸屏监听
开发语言·python·pyqt
zy_destiny2 天前
【工业场景】用YOLOv8实现反光衣识别
人工智能·python·yolo·机器学习·计算机视觉