工具系列:TensorFlow决策森林_(9)自动超参数调整

文章目录

欢迎来到TensorFlow决策森林 自动超参数调整 教程。在本文中,您将学习如何使用TensorFlow Decision Forests进行自动超参数调整来改进您的模型。

更具体地说,我们将:

  1. 训练一个没有超参数调整的模型。这个模型将用于衡量超参数调整的质量改进。
  2. 使用TF-DF的调谐器 训练一个有超参数调整 的模型。要优化的超参数将被手动定义
  3. 使用TF-DF的调谐器 训练另一个有超参数调整 的模型。但是这次,要优化的超参数将被自动设置这是使用超参数调整时推荐尝试的第一种方法
  4. 最后,我们将使用Keras的调谐器 训练一个有超参数调整的模型。

介绍

学习算法在训练数据集上训练机器学习模型。学习算法的参数,称为"超参数",控制模型的训练方式并影响其质量。因此,找到最佳超参数是建模的重要阶段。

有些超参数很容易配置。例如,增加随机森林中的树的数量(num_trees)可以提高模型的质量,直到达到一个平台。因此,设置与服务约束兼容的最大值(更多的树意味着更大的模型)是一个有效的经验法则。然而,其他超参数与模型有更复杂的交互,并不能用这样简单的规则来选择。例如,增加梯度提升树模型的最大树深度(max_depth)既可以提高模型的质量,也可以降低模型的质量。此外,超参数之间可以相互作用,超参数的最佳值不能孤立地找到。

选择超参数值有三种主要方法:

  1. 默认方法 :学习算法带有默认值。虽然在所有情况下都不理想,但这些值在大多数情况下产生合理的结果。这种方法被推荐作为任何建模中使用的第一种方法。
    此页面列出了TF Decision Forests的默认值。

  2. 模板超参数方法 :除了默认值之外,TF Decision Forests还公开了超参数模板。这些是经过基准调整的超参数值,具有出色的性能,但训练成本很高(例如,hyperparameter_template="benchmark_rank1")。

  3. 手动调整方法 :您可以手动测试不同的超参数值,并选择表现最好的那个。
    本指南提供了一些建议。

  4. 自动调整方法:可以使用调整算法自动找到最佳的超参数值。这种方法通常可以获得最佳结果,并且不需要专业知识。这种方法的主要缺点是对于大型数据集需要花费的时间。

在这个colab中,我们将展示TensorFlow Decision Forests库中的默认自动调整方法。

超参数调整算法

自动调整算法通过生成和评估大量的超参数值来工作。其中每个迭代被称为一个"试验"。试验的评估是昂贵的,因为它需要每次训练一个新模型。在调整结束时,使用评估最佳的超参数。

调整算法的配置如下:

搜索空间

搜索空间是要优化的超参数列表及其可以取的值。例如,树的最大深度可以优化为1到32之间的值。探索更多的超参数和更多的可能值通常会导致更好的模型,但也需要更多的时间。超参数在文档中列出。

当一个超参数的可能值取决于另一个超参数的值时,搜索空间被称为条件空间。

试验的数量

试验的数量定义了将要训练和评估的模型数量。更多的试验数量通常会导致更好的模型,但需要更多的时间。

优化器

优化器选择要评估过去试验评估的下一个超参数。最简单且通常合理的优化器是随机选择超参数。

目标/试验分数

目标是调谐器优化的度量标准。通常,这个度量标准是模型在验证数据集上评估的质量的度量(例如准确性、对数损失)。

训练-验证-测试

验证数据集应该与训练数据集不同:如果训练和验证数据集相同,选择的超参数将是无关紧要的。验证数据集也应该与测试数据集(也称为留出数据集)不同:因为超参数调整是一种训练形式,如果测试和验证数据集相同,您实际上是在测试数据集上进行训练。在这种情况下,您可能会在测试数据集上过度拟合而没有办法进行测量。

交叉验证

在小数据集的情况下,例如包含少于100k个示例的数据集,超参数调整可以与交叉验证相结合:目标/分数的评估不是从单个训练-测试轮回中进行的,而是作为多个交叉验证轮回中指标的平均值进行评估。

与训练-验证-测试数据集类似,用于评估超参数调整期间的目标/分数的交叉验证应该与用于评估模型质量的交叉验证不同。

袋外评估

一些模型,如随机森林,可以使用"袋外评估"方法在训练数据集上进行评估。虽然不如交叉验证准确,但"袋外评估"比交叉验证快得多,并且不需要单独的验证数据集。

在TensorFlow决策森林中

在TF-DF中,模型的"自我"评估始终是一种公平的评估模型的方法。例如,随机森林模型使用袋外评估,而梯度提升模型使用验证数据集。

使用TF Decision Forests进行超参数调整

TF-DF支持最小配置的自动超参数调整。在下一个示例中,我们将训练和比较两个模型:一个使用默认超参数训练,一个使用超参数调整训练。

注意: 在大型数据集的情况下,超参数调整可能需要很长时间。在这种情况下,建议使用TF-DF进行分布式训练,以大大加快超参数调整的速度。

设置

python 复制代码
# 安装TensorFlow Decision Forests库
!pip install tensorflow_decision_forests -U -qq

安装Wurlitzer。在colabs中显示详细的训练日志需要使用Wurlitzer(使用verbose=2)。

python 复制代码
# 安装wurlitzer库,用于在Jupyter Notebook中隐藏pip安装的输出信息
!pip install wurlitzer -U -qq

导入必要的库。

python 复制代码
# 导入所需的库
import tensorflow_decision_forests as tfdf
import matplotlib.pyplot as plt
import pandas as pd
import tensorflow as tf
import numpy as np

隐藏的代码单元格在colab中限制了输出的高度。

python 复制代码
#@title 定义"set_cell_height"函数。

from IPython.core.magic import register_line_magic  # 导入register_line_magic函数
from IPython.display import Javascript  # 导入Javascript类
from IPython.display import display  # 导入display函数

# 由于一些模型训练日志可能会覆盖整个屏幕,如果不将其压缩到较小的视口中,则会很难查看。
# 这个魔术函数允许设置单元格的最大高度。
@register_line_magic  # 注册为魔术函数
def set_cell_height(size):  # 定义set_cell_height函数,接受一个参数size
  display(  # 调用display函数
      Javascript("google.colab.output.setIframeHeight(0, true, {maxHeight: " +  # 调用Javascript类的方法设置iframe的最大高度
                 str(size) + "})"))  # 将size转换为字符串并作为参数传递给Javascript方法

在没有自动超参数调整的情况下训练模型

我们将在UCI提供的Adult数据集上训练模型。让我们下载数据集。

python 复制代码
# 下载成人数据集的副本。
!wget -q https://raw.githubusercontent.com/google/yggdrasil-decision-forests/main/yggdrasil_decision_forests/test_data/dataset/adult_train.csv -O /tmp/adult_train.csv
!wget -q https://raw.githubusercontent.com/google/yggdrasil-decision-forests/main/yggdrasil_decision_forests/test_data/dataset/adult_test.csv -O /tmp/adult_test.csv

# 上述代码使用wget命令从指定的URL下载成人数据集的训练集和测试集副本。-q选项用于静默下载,-O选项用于指定下载文件的保存路径和文件名。训练集保存在/tmp/adult_train.csv,测试集保存在/tmp/adult_test.csv。

请将数据集分割为训练集和测试集。

python 复制代码
# 加载数据集到内存中
train_df = pd.read_csv("/tmp/adult_train.csv")  # 从文件中读取训练数据集
test_df = pd.read_csv("/tmp/adult_test.csv")  # 从文件中读取测试数据集

# 将数据集转换为 TensorFlow 数据集
train_ds = tfdf.keras.pd_dataframe_to_tf_dataset(train_df, label="income")  # 将训练数据集转换为 TensorFlow 数据集,并指定标签为 "income"
test_ds = tfdf.keras.pd_dataframe_to_tf_dataset(test_df, label="income")  # 将测试数据集转换为 TensorFlow 数据集,并指定标签为 "income"

首先,我们使用默认超参数训练和评估一个Gradient Boosted Trees模型的质量。

python 复制代码
%%time
# 训练一个使用默认超参数的模型
# 创建一个梯度提升树模型对象
model = tfdf.keras.GradientBoostedTreesModel()

# 使用训练数据集对模型进行训练
model.fit(train_ds)
Warning: The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.


WARNING:absl:The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.


Use /tmpfs/tmp/tmp8vxzd_gw as temporary training directory
Reading training dataset...


[WARNING 23-08-16 11:07:53.6383 UTC gradient_boosted_trees.cc:1818] "goss_alpha" set but "sampling_method" not equal to "GOSS".
[WARNING 23-08-16 11:07:53.6384 UTC gradient_boosted_trees.cc:1829] "goss_beta" set but "sampling_method" not equal to "GOSS".
[WARNING 23-08-16 11:07:53.6384 UTC gradient_boosted_trees.cc:1843] "selective_gradient_boosting_ratio" set but "sampling_method" not equal to "SELGB".


Training dataset read in 0:00:03.854321. Found 22792 examples.
Training model...
Model trained in 0:00:03.313284
Compiling model...


[INFO 23-08-16 11:08:00.8007 UTC kernel.cc:1243] Loading model from path /tmpfs/tmp/tmp8vxzd_gw/model/ with prefix 672884dfed9c4c02
[INFO 23-08-16 11:08:00.8244 UTC abstract_model.cc:1311] Engine "GradientBoostedTreesQuickScorerExtended" built
[INFO 23-08-16 11:08:00.8244 UTC kernel.cc:1075] Use fast generic engine


WARNING:tensorflow:AutoGraph could not transform <function simple_ml_inference_op_with_handle at 0x7f23da2a7ee0> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: could not get source code
To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert


WARNING:tensorflow:AutoGraph could not transform <function simple_ml_inference_op_with_handle at 0x7f23da2a7ee0> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: could not get source code
To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert


WARNING: AutoGraph could not transform <function simple_ml_inference_op_with_handle at 0x7f23da2a7ee0> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: could not get source code
To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
Model compiled.
CPU times: user 12.7 s, sys: 1.1 s, total: 13.8 s
Wall time: 8.9 s





<keras.src.callbacks.History at 0x7f24cdc1f9a0>
python 复制代码
# 评估模型
model.compile(["accuracy"])  # 编译模型,使用"accuracy"作为评估指标

# 使用测试数据集评估模型的准确率
test_accuracy = model.evaluate(test_ds, return_dict=True, verbose=0)["accuracy"]

# 打印没有超参数调整的测试准确率
print(f"没有超参数调整的测试准确率: {test_accuracy:.4f}")
Test accuracy without hyper-parameter tuning: 0.8744

默认模型的超参数可以通过learner_params函数获得。这些参数的定义可以在文档中找到。

python 复制代码
# 打印模型的默认超参数
print("Default hyper-parameters of the model:\n", model.learner_params)
Default hyper-parameters of the model:
 {'adapt_subsample_for_maximum_training_duration': False, 'allow_na_conditions': False, 'apply_link_function': True, 'categorical_algorithm': 'CART', 'categorical_set_split_greedy_sampling': 0.1, 'categorical_set_split_max_num_items': -1, 'categorical_set_split_min_item_frequency': 1, 'compute_permutation_variable_importance': False, 'dart_dropout': 0.01, 'early_stopping': 'LOSS_INCREASE', 'early_stopping_initial_iteration': 10, 'early_stopping_num_trees_look_ahead': 30, 'focal_loss_alpha': 0.5, 'focal_loss_gamma': 2.0, 'forest_extraction': 'MART', 'goss_alpha': 0.2, 'goss_beta': 0.1, 'growing_strategy': 'LOCAL', 'honest': False, 'honest_fixed_separation': False, 'honest_ratio_leaf_examples': 0.5, 'in_split_min_examples_check': True, 'keep_non_leaf_label_distribution': True, 'l1_regularization': 0.0, 'l2_categorical_regularization': 1.0, 'l2_regularization': 0.0, 'lambda_loss': 1.0, 'loss': 'DEFAULT', 'max_depth': 6, 'max_num_nodes': None, 'maximum_model_size_in_memory_in_bytes': -1.0, 'maximum_training_duration_seconds': -1.0, 'min_examples': 5, 'missing_value_policy': 'GLOBAL_IMPUTATION', 'num_candidate_attributes': -1, 'num_candidate_attributes_ratio': -1.0, 'num_trees': 300, 'pure_serving_model': False, 'random_seed': 123456, 'sampling_method': 'RANDOM', 'selective_gradient_boosting_ratio': 0.01, 'shrinkage': 0.1, 'sorting_strategy': 'PRESORT', 'sparse_oblique_normalization': None, 'sparse_oblique_num_projections_exponent': None, 'sparse_oblique_projection_density_factor': None, 'sparse_oblique_weights': None, 'split_axis': 'AXIS_ALIGNED', 'subsample': 1.0, 'uplift_min_examples_in_treatment': 5, 'uplift_split_score': 'KULLBACK_LEIBLER', 'use_hessian_gain': False, 'validation_interval_in_trees': 1, 'validation_ratio': 0.1}

使用自动化超参数调整和手动定义超参数训练模型

通过指定模型的tuner构造函数参数来启用超参数调整。调谐器对象包含了调谐器的所有配置(搜索空间、优化器、试验和目标)。

注意: 在下一节中,您将看到如何自动配置超参数值。然而,手动设置超参数如此处所示仍然是有价值的,可以帮助理解。

python 复制代码
# 配置调参器。

# 创建一个有50次试验的随机搜索调参器。
tuner = tfdf.tuner.RandomSearch(num_trials=50)

# 定义搜索空间。
#
# 添加更多的参数通常会提高模型的质量,但会使调参时间更长。

tuner.choice("min_examples", [2, 5, 7, 10])
tuner.choice("categorical_algorithm", ["CART", "RANDOM"])

# 一些超参数只对其他超参数的特定值有效。例如,当"growing_strategy=LOCAL"时,"max_depth"参数大多数情况下是有用的,而当"growing_strategy=BEST_FIRST_GLOBAL"时,"max_num_nodes"更适用。

local_search_space = tuner.choice("growing_strategy", ["LOCAL"])
local_search_space.choice("max_depth", [3, 4, 5, 6, 8])

# merge=True表示参数(这里是"growing_strategy")已经定义,并且新的值将被添加到其中。
global_search_space = tuner.choice("growing_strategy", ["BEST_FIRST_GLOBAL"], merge=True)
global_search_space.choice("max_num_nodes", [16, 32, 64, 128, 256])

tuner.choice("use_hessian_gain", [True, False])
tuner.choice("shrinkage", [0.02, 0.05, 0.10, 0.15])
tuner.choice("num_candidate_attributes_ratio", [0.2, 0.5, 0.9, 1.0])

# 取消对以下超参数的注释(或全部取消注释)以提高搜索的质量。相应地应增加试验的次数。

# tuner.choice("split_axis", ["AXIS_ALIGNED"])
# oblique_space = tuner.choice("split_axis", ["SPARSE_OBLIQUE"], merge=True)
# oblique_space.choice("sparse_oblique_normalization",
#                      ["NONE", "STANDARD_DEVIATION", "MIN_MAX"])
# oblique_space.choice("sparse_oblique_weights", ["BINARY", "CONTINUOUS"])
# oblique_space.choice("sparse_oblique_num_projections_exponent", [1.0, 1.5])
<tensorflow_decision_forests.component.tuner.tuner.SearchSpace at 0x7f240c3b32b0>
python 复制代码
%%time
%set_cell_height 300


# 使用tuner对象来训练模型
tuned_model = tfdf.keras.GradientBoostedTreesModel(tuner=tuner)
tuned_model.fit(train_ds, verbose=2)

# 在训练日志中,可以看到类似"[10/50] Score: -0.45 / -0.40 HParams: ..."的行。
# 这表示已经完成了50个试验中的10个。最后一个试验返回了得分"-0.45",而迄今为止最好的试验得分为"-0.40"。
# 在这个例子中,模型通过对数损失进行优化。由于得分是最大化的,而对数损失应该最小化,所以得分实际上是负对数损失。
<IPython.core.display.Javascript object>


Warning: The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.


WARNING:absl:The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.


Use /tmpfs/tmp/tmpzdzgno07 as temporary training directory
Reading training dataset...
Training tensor examples:
Features: {'age': <tf.Tensor 'data:0' shape=(None,) dtype=int64>, 'workclass': <tf.Tensor 'data_1:0' shape=(None,) dtype=string>, 'fnlwgt': <tf.Tensor 'data_2:0' shape=(None,) dtype=int64>, 'education': <tf.Tensor 'data_3:0' shape=(None,) dtype=string>, 'education_num': <tf.Tensor 'data_4:0' shape=(None,) dtype=int64>, 'marital_status': <tf.Tensor 'data_5:0' shape=(None,) dtype=string>, 'occupation': <tf.Tensor 'data_6:0' shape=(None,) dtype=string>, 'relationship': <tf.Tensor 'data_7:0' shape=(None,) dtype=string>, 'race': <tf.Tensor 'data_8:0' shape=(None,) dtype=string>, 'sex': <tf.Tensor 'data_9:0' shape=(None,) dtype=string>, 'capital_gain': <tf.Tensor 'data_10:0' shape=(None,) dtype=int64>, 'capital_loss': <tf.Tensor 'data_11:0' shape=(None,) dtype=int64>, 'hours_per_week': <tf.Tensor 'data_12:0' shape=(None,) dtype=int64>, 'native_country': <tf.Tensor 'data_13:0' shape=(None,) dtype=string>}
Label: Tensor("data_14:0", shape=(None,), dtype=int64)
Weights: None
Normalized tensor features:
 {'age': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast:0' shape=(None,) dtype=float32>), 'workclass': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_1:0' shape=(None,) dtype=string>), 'fnlwgt': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_1:0' shape=(None,) dtype=float32>), 'education': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_3:0' shape=(None,) dtype=string>), 'education_num': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_2:0' shape=(None,) dtype=float32>), 'marital_status': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_5:0' shape=(None,) dtype=string>), 'occupation': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_6:0' shape=(None,) dtype=string>), 'relationship': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_7:0' shape=(None,) dtype=string>), 'race': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_8:0' shape=(None,) dtype=string>), 'sex': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_9:0' shape=(None,) dtype=string>), 'capital_gain': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_3:0' shape=(None,) dtype=float32>), 'capital_loss': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_4:0' shape=(None,) dtype=float32>), 'hours_per_week': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_5:0' shape=(None,) dtype=float32>), 'native_country': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_13:0' shape=(None,) dtype=string>)}


[WARNING 23-08-16 11:08:02.9532 UTC gradient_boosted_trees.cc:1818] "goss_alpha" set but "sampling_method" not equal to "GOSS".
[WARNING 23-08-16 11:08:02.9533 UTC gradient_boosted_trees.cc:1829] "goss_beta" set but "sampling_method" not equal to "GOSS".
[WARNING 23-08-16 11:08:02.9533 UTC gradient_boosted_trees.cc:1843] "selective_gradient_boosting_ratio" set but "sampling_method" not equal to "SELGB".


Training dataset read in 0:00:00.389683. Found 22792 examples.
Training model...
Standard output detected as not visible to the user e.g. running in a notebook. Creating a training log redirection. If training gets stuck, try calling tfdf.keras.set_training_logs_redirection(False).


[INFO 23-08-16 11:08:03.3555 UTC kernel.cc:773] Start Yggdrasil model training
[INFO 23-08-16 11:08:03.3555 UTC kernel.cc:774] Collect training examples
[INFO 23-08-16 11:08:03.3555 UTC kernel.cc:787] Dataspec guide:
column_guides {
  column_name_pattern: "^__LABEL$"
  type: CATEGORICAL
  categorial {
    min_vocab_frequency: 0
    max_vocab_count: -1
  }
}
default_column_guide {
  categorial {
    max_vocab_count: 2000
  }
  discretized_numerical {
    maximum_num_bins: 255
  }
}
ignore_columns_without_guides: false
detect_numerical_as_discretized_numerical: false

[INFO 23-08-16 11:08:03.3556 UTC kernel.cc:393] Number of batches: 23
[INFO 23-08-16 11:08:03.3556 UTC kernel.cc:394] Number of examples: 22792
[INFO 23-08-16 11:08:03.3630 UTC data_spec_inference.cc:305] 1 item(s) have been pruned (i.e. they are considered out of dictionary) for the column native_country (40 item(s) left) because min_value_count=5 and max_number_of_unique_values=2000
[INFO 23-08-16 11:08:03.3630 UTC data_spec_inference.cc:305] 1 item(s) have been pruned (i.e. they are considered out of dictionary) for the column occupation (13 item(s) left) because min_value_count=5 and max_number_of_unique_values=2000
[INFO 23-08-16 11:08:03.3631 UTC data_spec_inference.cc:305] 1 item(s) have been pruned (i.e. they are considered out of dictionary) for the column workclass (7 item(s) left) because min_value_count=5 and max_number_of_unique_values=2000
[INFO 23-08-16 11:08:03.3698 UTC kernel.cc:794] Training dataset:
Number of records: 22792
Number of columns: 15

Number of columns by type:
	CATEGORICAL: 9 (60%)
	NUMERICAL: 6 (40%)

Columns:

CATEGORICAL: 9 (60%)
	0: "__LABEL" CATEGORICAL integerized vocab-size:3 no-ood-item
	4: "education" CATEGORICAL has-dict vocab-size:17 zero-ood-items most-frequent:"HS-grad" 7340 (32.2043%)
	8: "marital_status" CATEGORICAL has-dict vocab-size:8 zero-ood-items most-frequent:"Married-civ-spouse" 10431 (45.7661%)
	9: "native_country" CATEGORICAL num-nas:407 (1.78571%) has-dict vocab-size:41 num-oods:1 (0.00446728%) most-frequent:"United-States" 20436 (91.2933%)
	10: "occupation" CATEGORICAL num-nas:1260 (5.52826%) has-dict vocab-size:14 num-oods:1 (0.00464425%) most-frequent:"Prof-specialty" 2870 (13.329%)
	11: "race" CATEGORICAL has-dict vocab-size:6 zero-ood-items most-frequent:"White" 19467 (85.4115%)
	12: "relationship" CATEGORICAL has-dict vocab-size:7 zero-ood-items most-frequent:"Husband" 9191 (40.3256%)
	13: "sex" CATEGORICAL has-dict vocab-size:3 zero-ood-items most-frequent:"Male" 15165 (66.5365%)
	14: "workclass" CATEGORICAL num-nas:1257 (5.51509%) has-dict vocab-size:8 num-oods:1 (0.0046436%) most-frequent:"Private" 15879 (73.7358%)

NUMERICAL: 6 (40%)
	1: "age" NUMERICAL mean:38.6153 min:17 max:90 sd:13.661
	2: "capital_gain" NUMERICAL mean:1081.9 min:0 max:99999 sd:7509.48
	3: "capital_loss" NUMERICAL mean:87.2806 min:0 max:4356 sd:403.01
	5: "education_num" NUMERICAL mean:10.0927 min:1 max:16 sd:2.56427
	6: "fnlwgt" NUMERICAL mean:189879 min:12285 max:1.4847e+06 sd:106423
	7: "hours_per_week" NUMERICAL mean:40.3955 min:1 max:99 sd:12.249

Terminology:
	nas: Number of non-available (i.e. missing) values.
	ood: Out of dictionary.
	manually-defined: Attribute which type is manually defined by the user i.e. the type was not automatically inferred.
	tokenized: The attribute value is obtained through tokenization.
	has-dict: The attribute is attached to a string dictionary e.g. a categorical attribute stored as a string.
	vocab-size: Number of unique values.

[INFO 23-08-16 11:08:03.3699 UTC kernel.cc:810] Configure learner
[WARNING 23-08-16 11:08:03.3702 UTC gradient_boosted_trees.cc:1818] "goss_alpha" set but "sampling_method" not equal to "GOSS".
[WARNING 23-08-16 11:08:03.3702 UTC gradient_boosted_trees.cc:1829] "goss_beta" set but "sampling_method" not equal to "GOSS".
[WARNING 23-08-16 11:08:03.3702 UTC gradient_boosted_trees.cc:1843] "selective_gradient_boosting_ratio" set but "sampling_method" not equal to "SELGB".
[INFO 23-08-16 11:08:03.3703 UTC kernel.cc:824] Training config:
learner: "HYPERPARAMETER_OPTIMIZER"
features: "^age$"
features: "^capital_gain$"
features: "^capital_loss$"
features: "^education$"
features: "^education_num$"
features: "^fnlwgt$"
features: "^hours_per_week$"
features: "^marital_status$"
features: "^native_country$"
features: "^occupation$"
features: "^race$"
features: "^relationship$"
features: "^sex$"
features: "^workclass$"
label: "^__LABEL$"
task: CLASSIFICATION
metadata {
  framework: "TF Keras"
}
[yggdrasil_decision_forests.model.hyperparameters_optimizer_v2.proto.hyperparameters_optimizer_config] {
  base_learner {
    learner: "GRADIENT_BOOSTED_TREES"
    features: "^age$"
    features: "^capital_gain$"
    features: "^capital_loss$"
    features: "^education$"
    features: "^education_num$"
    features: "^fnlwgt$"
    features: "^hours_per_week$"
    features: "^marital_status$"
    features: "^native_country$"
    features: "^occupation$"
    features: "^race$"
    features: "^relationship$"
    features: "^sex$"
    features: "^workclass$"
    label: "^__LABEL$"
    task: CLASSIFICATION
    random_seed: 123456
    pure_serving_model: false
    [yggdrasil_decision_forests.model.gradient_boosted_trees.proto.gradient_boosted_trees_config] {
      num_trees: 300
      decision_tree {
        max_depth: 6
        min_examples: 5
        in_split_min_examples_check: true
        keep_non_leaf_label_distribution: true
        num_candidate_attributes: -1
        missing_value_policy: GLOBAL_IMPUTATION
        allow_na_conditions: false
        categorical_set_greedy_forward {
          sampling: 0.1
          max_num_items: -1
          min_item_frequency: 1
        }
        growing_strategy_local {
        }
        categorical {
          cart {
          }
        }
        axis_aligned_split {
        }
        internal {
          sorting_strategy: PRESORTED
        }
        uplift {
          min_examples_in_treatment: 5
          split_score: KULLBACK_LEIBLER
        }
      }
      shrinkage: 0.1
      loss: DEFAULT
      validation_set_ratio: 0.1
      validation_interval_in_trees: 1
      early_stopping: VALIDATION_LOSS_INCREASE
      early_stopping_num_trees_look_ahead: 30
      l2_regularization: 0
      lambda_loss: 1
      mart {
      }
      adapt_subsample_for_maximum_training_duration: false
      l1_regularization: 0
      use_hessian_gain: false
      l2_regularization_categorical: 1
      stochastic_gradient_boosting {
        ratio: 1
      }
      apply_link_function: true
      compute_permutation_variable_importance: false
      binary_focal_loss_options {
        misprediction_exponent: 2
        positive_sample_coefficient: 0.5
      }
      early_stopping_initial_iteration: 10
    }
  }
  optimizer {
    optimizer_key: "RANDOM"
    [yggdrasil_decision_forests.model.hyperparameters_optimizer_v2.proto.random] {
      num_trials: 50
    }
  }
  search_space {
    fields {
      name: "min_examples"
      discrete_candidates {
        possible_values {
          integer: 2
        }
        possible_values {
          integer: 5
        }
        possible_values {
          integer: 7
        }
        possible_values {
          integer: 10
        }
      }
    }
    fields {
      name: "categorical_algorithm"
      discrete_candidates {
        possible_values {
          categorical: "CART"
        }
        possible_values {
          categorical: "RANDOM"
        }
      }
    }
    fields {
      name: "growing_strategy"
      discrete_candidates {
        possible_values {
          categorical: "LOCAL"
        }
        possible_values {
          categorical: "BEST_FIRST_GLOBAL"
        }
      }
      children {
        name: "max_depth"
        discrete_candidates {
          possible_values {
            integer: 3
          }
          possible_values {
            integer: 4
          }
          possible_values {
            integer: 5
          }
          possible_values {
            integer: 6
          }
          possible_values {
            integer: 8
          }
        }
        parent_discrete_values {
          possible_values {
            categorical: "LOCAL"
          }
        }
      }
      children {
        name: "max_num_nodes"
        discrete_candidates {
          possible_values {
            integer: 16
          }
          possible_values {
            integer: 32
          }
          possible_values {
            integer: 64
          }
          possible_values {
            integer: 128
          }
          possible_values {
            integer: 256
          }
        }
        parent_discrete_values {
          possible_values {
            categorical: "BEST_FIRST_GLOBAL"
          }
        }
      }
    }
    fields {
      name: "use_hessian_gain"
      discrete_candidates {
        possible_values {
          categorical: "true"
        }
        possible_values {
          categorical: "false"
        }
      }
    }
    fields {
      name: "shrinkage"
      discrete_candidates {
        possible_values {
          real: 0.02
        }
        possible_values {
          real: 0.05
        }
        possible_values {
          real: 0.1
        }
        possible_values {
          real: 0.15
        }
      }
    }
    fields {
      name: "num_candidate_attributes_ratio"
      discrete_candidates {
        possible_values {
          real: 0.2
        }
        possible_values {
          real: 0.5
        }
        possible_values {
          real: 0.9
        }
        possible_values {
          real: 1
        }
      }
    }
  }
  base_learner_deployment {
    num_threads: 1
  }
}

[INFO 23-08-16 11:08:03.3707 UTC kernel.cc:827] Deployment config:
cache_path: "/tmpfs/tmp/tmpzdzgno07/working_cache"
num_threads: 32
try_resume_training: true

[INFO 23-08-16 11:08:03.3709 UTC kernel.cc:889] Train model
[INFO 23-08-16 11:08:03.3711 UTC hyperparameters_optimizer.cc:209] Hyperparameter search space:
fields {
  name: "min_examples"
  discrete_candidates {
    possible_values {
      integer: 2
    }
    possible_values {
      integer: 5
    }
    possible_values {
      integer: 7
    }
    possible_values {
      integer: 10
    }
  }
}
fields {
  name: "categorical_algorithm"
  discrete_candidates {
    possible_values {
      categorical: "CART"
    }
    possible_values {
      categorical: "RANDOM"
    }
  }
}
fields {
  name: "growing_strategy"
  discrete_candidates {
    possible_values {
      categorical: "LOCAL"
    }
    possible_values {
      categorical: "BEST_FIRST_GLOBAL"
    }
  }
  children {
    name: "max_depth"
    discrete_candidates {
      possible_values {
        integer: 3
      }
      possible_values {
        integer: 4
      }
      possible_values {
        integer: 5
      }
      possible_values {
        integer: 6
      }
      possible_values {
        integer: 8
      }
    }
    parent_discrete_values {
      possible_values {
        categorical: "LOCAL"
      }
    }
  }
  children {
    name: "max_num_nodes"
    discrete_candidates {
      possible_values {
        integer: 16
      }
      possible_values {
        integer: 32
      }
      possible_values {
        integer: 64
      }
      possible_values {
        integer: 128
      }
      possible_values {
        integer: 256
      }
    }
    parent_discrete_values {
      possible_values {
        categorical: "BEST_FIRST_GLOBAL"
      }
    }
  }
}
fields {
  name: "use_hessian_gain"
  discrete_candidates {
    possible_values {
      categorical: "true"
    }
    possible_values {
      categorical: "false"
    }
  }
}
fields {
  name: "shrinkage"
  discrete_candidates {
    possible_values {
      real: 0.02
    }
    possible_values {
      real: 0.05
    }
    possible_values {
      real: 0.1
    }
    possible_values {
      real: 0.15
    }
  }
}
fields {
  name: "num_candidate_attributes_ratio"
  discrete_candidates {
    possible_values {
      real: 0.2
    }
    possible_values {
      real: 0.5
    }
    possible_values {
      real: 0.9
    }
    possible_values {
      real: 1
    }
  }
}

[INFO 23-08-16 11:08:03.3713 UTC hyperparameters_optimizer.cc:500] Start local tuner with 32 thread(s)
[INFO 23-08-16 11:08:03.3728 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:03.3728 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:03.3729 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:03.3729 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:03.3729 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:03.3730 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and [INFO 23-08-16 11:08:03.3730 UTC gradient_boosted_trees.cc:14 feature(s).
459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:03.3731 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO[INFO 23-08-16 11:08:03.3731 UTC  23-08-16 11:08:03.3732 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:03.3732 UTC gradient_boosted_trees.cc[INFO 23-08-16 11:08:03.3732 UTC gradient_boosted_trees.cc:1085:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:03.3733 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:03.3733 UTC gradient_boosted_trees.cc:459[[INFO 23-08-16 11:08:03.3733 UTC [INFOgradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).[ 23-08-16 11:08:03.3734 UTC 
INFO] Default loss set to BINOMIAL_LOG_LIKELIHOOD[INFO 23-08-16 11:08:03.3734 UTC INFOgradient_boosted_trees.cc
 23-08-16 11:08:03.3734 UTC [ 23-08-16 11:08:03.3734 UTC :[INFO[[INFOINFO 23-08-16 11:08:03.3735 UTC gradient_boosted_trees.cc 23-08-16 11:08:03.3735 UTC gradient_boosted_trees.ccgradient_boosted_trees.ccgradient_boosted_trees.cc:459] 459Default loss set to BINOMIAL_LOG_LIKELIHOOD
 23-08-16 11:08:03.3735 UTC INFOgradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD:gradient_boosted_trees.cc
:] 459:] Default loss set to 459BINOMIAL_LOG_LIKELIHOOD
[459INFO] Default loss set to  23-08-16 11:08:03.3736 UTC  23-08-16 11:08:03.3736 UTC BINOMIAL_LOG_LIKELIHOODgradient_boosted_trees.cc:Default loss set to [] [INFO:4591085 23-08-16 11:08:03.3737 UTC gradient_boosted_trees.cc
:gradient_boosted_trees.cc:INFOBINOMIAL_LOG_LIKELIHOOD459]  23-08-16 11:08:03.3737 UTC ] 
Default loss set to [BINOMIAL_LOG_LIKELIHOODINFO[Training gradient boosted tree on gradient_boosted_trees.ccINFO 23-08-16 11:08:03.3738 UTC :1085[] ] INFO22792 23-08-16 11:08:03.3738 UTC  example(s) and gradient_boosted_trees.cc14Default loss set to  feature(s).BINOMIAL_LOG_LIKELIHOODgradient_boosted_trees.cc
 23-08-16 11:08:03.3738 UTC :[INFO1085gradient_boosted_trees.ccTraining gradient boosted tree on ] 
:Default loss set to :227921085 23-08-16 11:08:03.3738 UTC [BINOMIAL_LOG_LIKELIHOOD10851085Training gradient boosted tree on ] [Training gradient boosted tree on INFOINFO22792
 example(s) and ]  23-08-16 11:08:03.3739 UTC gradient_boosted_trees.cc[ example(s) and INFO1422792 23-08-16 11:08:03.3739 UTC gradient_boosted_trees.cc feature(s).
:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
 23-08-16 11:08:03.3739 UTC gradient_boosted_trees.cc::10851085] ] Training gradient boosted tree on 14 example(s) and gradient_boosted_trees.cc feature(s).14 feature(s).Training gradient boosted tree on 

22792[ example(s) and :Training gradient boosted tree on 2279222792 example(s) and  example(s) and 1414INFO
[ 23-08-16 11:08:03.3741 UTC  feature(s).gradient_boosted_trees.cc45914] Default loss set to ]  feature(s).Training gradient boosted tree on 

 feature(s).
INFO 23-08-16 11:08:03.3742 UTC gradient_boosted_trees.cc:BINOMIAL_LOG_LIKELIHOOD1085
] [INFOTraining gradient boosted tree on 22792 example(s) and :[22792 23-08-16 11:08:03.3742 UTC 108514gradient_boosted_trees.cc feature(s).
:1085INFO]  example(s) and 14]  feature(s).Training gradient boosted tree on 22792
 23-08-16 11:08:03.3743 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD[ example(s) and INFO14 feature(s).Training gradient boosted tree on 
22792 example(s) and 14
 feature(s).[ 23-08-16 11:08:03.3743 UTC INFOgradient_boosted_trees.cc[ 23-08-16 11:08:03.3744 UTC [
INFO: 23-08-16 11:08:03.3744 UTC gradient_boosted_trees.cc459:] Default loss set to INFOBINOMIAL_LOG_LIKELIHOOD[459INFO] Default loss set to BINOMIAL_LOG_LIKELIHOOD 23-08-16 11:08:03.3745 UTC gradient_boosted_trees.ccgradient_boosted_trees.cc:459
] 
Default loss set to BINOMIAL_LOG_LIKELIHOOD:[459] INFO
Default loss set to [[INFO 23-08-16 11:08:03.3745 UTC  23-08-16 11:08:03.3745 UTC gradient_boosted_trees.ccBINOMIAL_LOG_LIKELIHOODgradient_boosted_trees.cc
:1085[[INFOINFO 23-08-16 11:08:03.3746 UTC  23-08-16 11:08:03.3746 UTC gradient_boosted_trees.cc: 23-08-16 11:08:03.3746 UTC [:INFO1085gradient_boosted_trees.cc1085]  23-08-16 11:08:03.3746 UTC gradient_boosted_trees.ccgradient_boosted_trees.cc:] Training gradient boosted tree on :] 1085Training gradient boosted tree on ] INFO22792: example(s) and 14Training gradient boosted tree on  feature(s).
22792 example(s) and 141085 feature(s).22792
 23-08-16 11:08:03.3747 UTC  example(s) and gradient_boosted_trees.cc:14459459] ] Training gradient boosted tree on  feature(s).22792 example(s) and 
Training gradient boosted tree on 14] 22792 example(s) and 14 feature(s).
Default loss set to BINOMIAL_LOG_LIKELIHOOD feature(s).Default loss set to 
BINOMIAL_LOG_LIKELIHOOD

[INFO 23-08-16 11:08:03.3748 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14[INFO 23-08-16 11:08:03.3749 UTC gradient_boosted_trees.cc:1085]  feature(s).
Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:03.3752 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:03.3752 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:03.3754 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:03.3754 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:03.3761 UTC gradient_boosted_trees.cc:459] Default loss set to [INFOBINOMIAL_LOG_LIKELIHOOD
 23-08-16 11:08:03.3762 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO[INFO 23-08-16 11:08:03.3762 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and  23-08-16 11:08:03.3762 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 1414 feature(s).
 feature(s).
[INFO 23-08-16 11:08:03.3768 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:03.3768 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:03.3772 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:03.3772 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:03.3774 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:03.3775 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:03.3914 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:03.4337 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:03.4344 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:03.4345 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:03.4347 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:03.4356 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:03.4363 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO[INFO 23-08-16 11:08:03.4369 UTC gradient_boosted_trees.cc: 23-08-16 11:08:03.4369 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:03.4370 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:03.4374 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO[[[INFOINFO 23-08-16 11:08:03.4382 UTC gradient_boosted_trees.ccINFO 23-08-16 11:08:03.4382 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and [2259:INFO1128 23-08-16 11:08:03.4382 UTC [ 23-08-16 11:08:03.4382 UTC INFOgradient_boosted_trees.ccgradient_boosted_trees.cc: examples used for validation:] 
205331128 23-08-16 11:08:03.4382 UTC ] 20533gradient_boosted_trees.cc examples used for training and 2259:1128 examples used for validation examples used for training and ]  23-08-16 11:08:03.4382 UTC 205332259gradient_boosted_trees.cc examples used for training and 2259 examples used for validation:
1128] 205331128 examples used for training and  examples used for validation2259 examples used for validation
] 20533

 examples used for training and 2259 examples used for validation
[INFO[INFO 23-08-16 11:08:03.4385 UTC gradient_boosted_trees.cc 23-08-16 11:08:03.4385 UTC gradient_boosted_trees.cc::1128[INFO] 20533 examples used for training and 22591128] 20533 examples used for training and 2259 examples used for validation examples used for validation
 23-08-16 11:08:03.4386 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation

[INFO[INFO 23-08-16 11:08:03.4403 UTC gradient_boosted_trees.cc:1128[[[INFO] 20533INFO examples used for training and 2259INFO examples used for validation
 23-08-16 11:08:03.4404 UTC gradient_boosted_trees.cc 23-08-16 11:08:03.4404 UTC :gradient_boosted_trees.cc 23-08-16 11:08:03.4403 UTC :1128] 20533 examples used for training and gradient_boosted_trees.cc 23-08-16 11:08:03.4404 UTC 2259 examples used for validationgradient_boosted_trees.cc::1128] 20533 examples used for training and 11282259 examples used for validation1128
] 
20533] 20533 examples used for training and 2259 examples used for validation
 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:03.4409 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[[INFOINFO 23-08-16 11:08:03.4416 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259[ 23-08-16 11:08:03.4416 UTC gradient_boosted_trees.ccINFO examples used for validation
: 23-08-16 11:08:03.4416 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:03.4447 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:03.4462 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:03.4490 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:03.4535 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.012352 train-accuracy:0.761895 valid-loss:1.067086 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.4640 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.033944 train-accuracy:0.761895 valid-loss:1.087890 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.4689 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.007318 train-accuracy:0.761895 valid-loss:1.063819 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.4717 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.015585 train-accuracy:0.761895 valid-loss:1.068358 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.4747 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:0.992466 train-accuracy:0.761895 valid-loss:1.048658 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.4758 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.080310 train-accuracy:0.761895 valid-loss:1.138544 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.4762 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.024983 train-accuracy:0.761895 valid-loss:1.080660 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.4800 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.013950 train-accuracy:0.761895 valid-loss:1.069965 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.4803 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.035081 train-accuracy:0.761895 valid-loss:1.091865 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.4826 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:0.974501 train-accuracy:0.761895 valid-loss:1.024211 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.4855 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:0.992049 train-accuracy:0.761895 valid-loss:1.047210 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.4868 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.021242 train-accuracy:0.761895 valid-loss:1.076859 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.4882 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.056437 train-accuracy:0.761895 valid-loss:1.113420 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.4903 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.057450 train-accuracy:0.761895 valid-loss:1.114456 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.4920 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.054434 train-accuracy:0.761895 valid-loss:1.110703 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.4927 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.022126 train-accuracy:0.761895 valid-loss:1.077863 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.4975 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:0.985785 train-accuracy:0.761895 valid-loss:1.041083 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.5011 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.015975 train-accuracy:0.761895 valid-loss:1.071430 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.5043 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.056455 train-accuracy:0.761895 valid-loss:1.113410 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.5052 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.080606 train-accuracy:0.761895 valid-loss:1.138615 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.5098 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.055526 train-accuracy:0.761895 valid-loss:1.112339 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.5126 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.080606 train-accuracy:0.761895 valid-loss:1.138615 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.5132 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.080079 train-accuracy:0.761895 valid-loss:1.138475 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.5158 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.080017 train-accuracy:0.761895 valid-loss:1.137988 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.5282 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.052474 train-accuracy:0.761895 valid-loss:1.109417 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.5328 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:0.978408 train-accuracy:0.761895 valid-loss:1.031947 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.5335 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.055966 train-accuracy:0.761895 valid-loss:1.113004 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.5340 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.080559 train-accuracy:0.761895 valid-loss:1.138519 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.5397 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.080851 train-accuracy:0.761895 valid-loss:1.138916 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.5398 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.015861 train-accuracy:0.761895 valid-loss:1.071101 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.5503 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.054509 train-accuracy:0.761895 valid-loss:1.111318 valid-accuracy:0.736609
[INFO 23-08-16 11:08:03.5527 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.080203 train-accuracy:0.761895 valid-loss:1.138223 valid-accuracy:0.736609
[INFO 23-08-16 11:08:05.4509 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.553261 train-accuracy:0.875566 valid-loss:0.590388 valid-accuracy:0.865870
[INFO 23-08-16 11:08:05.4509 UTC gradient_boosted_trees.cc:247] Truncates the model to 299 tree(s) i.e. 299  iteration(s).
[INFO 23-08-16 11:08:05.4509 UTC gradient_boosted_trees.cc:310] Final model num-trees:299 valid-loss:0.590370 valid-accuracy:0.866313
[INFO 23-08-16 11:08:05.4520 UTC hyperparameters_optimizer.cc:582] [1/50] Score: -0.59037 / -0.59037 HParams: fields { name: "min_examples" value { integer: 7 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 3 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.15 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 23-08-16 11:08:05.4525 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:05.4526 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:05.4580 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:05.4741 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.583674
[INFO 23-08-16 11:08:05.4742 UTC gradient_boosted_trees.cc:247] Truncates the model to 61 tree(s) i.e. 61  iteration(s).
[INFO 23-08-16 11:08:05.4753 UTC gradient_boosted_trees.cc:310] Final model num-trees:61 valid-loss:0.583674 valid-accuracy:0.866755
[INFO 23-08-16 11:08:05.4799 UTC hyperparameters_optimizer.cc:582] [2/50] Score: -0.583674 / -0.583674 HParams: fields { name: "min_examples" value { integer: 5 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.15 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 23-08-16 11:08:05.4807 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:05.4807 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:05.4861 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:05.5125 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.080487 train-accuracy:0.761895 valid-loss:1.138629 valid-accuracy:0.736609
[INFO 23-08-16 11:08:05.5642 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.010715 train-accuracy:0.761895 valid-loss:1.065719 valid-accuracy:0.736609
[INFO 23-08-16 11:08:06.6744 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.540563 train-accuracy:0.877271 valid-loss:0.581734 valid-accuracy:0.869854
[INFO 23-08-16 11:08:06.6744 UTC gradient_boosted_trees.cc:247] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 23-08-16 11:08:06.6745 UTC gradient_boosted_trees.cc:310] Final model num-trees:300 valid-loss:0.581734 valid-accuracy:0.869854
[INFO 23-08-16 11:08:06.6779 UTC hyperparameters_optimizer.cc:582] [3/50] Score: -0.581734 / -0.581734 HParams: fields { name: "min_examples" value { integer: 10 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 3 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.15 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:08:06.6786 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:06.6787 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:06.6844 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:06.7151 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.057450 train-accuracy:0.761895 valid-loss:1.114456 valid-accuracy:0.736609
[INFO 23-08-16 11:08:06.8117 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.537262 train-accuracy:0.878780 valid-loss:0.585214 valid-accuracy:0.869854
[INFO 23-08-16 11:08:06.8117 UTC gradient_boosted_trees.cc:247] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 23-08-16 11:08:06.8117 UTC gradient_boosted_trees.cc:310] Final model num-trees:300 valid-loss:0.585214 valid-accuracy:0.869854
[INFO 23-08-16 11:08:06.8126 UTC hyperparameters_optimizer.cc:582] [4/50] Score: -0.585214 / -0.581734 HParams: fields { name: "min_examples" value { integer: 10 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 3 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.15 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 23-08-16 11:08:06.8139 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:06.8140 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:06.8191 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:06.8574 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.016525 train-accuracy:0.761895 valid-loss:1.069784 valid-accuracy:0.736609
[INFO 23-08-16 11:08:07.2475 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.588227
[INFO 23-08-16 11:08:07.2476 UTC gradient_boosted_trees.cc:247] Truncates the model to 113 tree(s) i.e. 113  iteration(s).
[INFO 23-08-16 11:08:07.2487 UTC gradient_boosted_trees.cc:310] Final model num-trees:113 valid-loss:0.588227 valid-accuracy:0.868969
[INFO 23-08-16 11:08:07.2525 UTC hyperparameters_optimizer.cc:582] [5/50] Score: -0.588227 / -0.581734 HParams: fields { name: "min_examples" value { integer: 7 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 64 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 23-08-16 11:08:07.2582 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:07.2583 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:07.2630 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:07.2844 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.053989 train-accuracy:0.761895 valid-loss:1.109535 valid-accuracy:0.736609
[INFO 23-08-16 11:08:07.6031 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.569154
[INFO 23-08-16 11:08:07.6031 UTC gradient_boosted_trees.cc:247] Truncates the model to 161 tree(s) i.e. 161  iteration(s).
[INFO 23-08-16 11:08:07.6034 UTC gradient_boosted_trees.cc:310] Final model num-trees:161 valid-loss:0.569154 valid-accuracy:0.873838
[INFO 23-08-16 11:08:07.6057 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:07.6058 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:07.6059 UTC hyperparameters_optimizer.cc:582] [6/50] Score: -0.569154 / -0.569154 HParams: fields { name: "min_examples" value { integer: 2 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.15 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:08:07.6114 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:07.6632 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.578871
[INFO 23-08-16 11:08:07.6632 UTC gradient_boosted_trees.cc:247] Truncates the model to 130 tree(s) i.e. 130  iteration(s).
[INFO 23-08-16 11:08:07.6638 UTC gradient_boosted_trees.cc:310] Final model num-trees:130 valid-loss:0.578871 valid-accuracy:0.869854
[INFO 23-08-16 11:08:07.6667 UTC hyperparameters_optimizer.cc:582] [7/50] Score: -0.578871 / -0.569154 HParams: fields { name: "min_examples" value { integer: 2 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 32 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 23-08-16 11:08:07.6677 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:07.6677 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:07.6714 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:0.981052 train-accuracy:0.761895 valid-loss:1.035441 valid-accuracy:0.736609
[INFO 23-08-16 11:08:07.6733 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:07.7146 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.080688 train-accuracy:0.761895 valid-loss:1.138783 valid-accuracy:0.736609
[INFO 23-08-16 11:08:07.7908 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.574698
[INFO 23-08-16 11:08:07.7909 UTC gradient_boosted_trees.cc:247] Truncates the model to 242 tree(s) i.e. 242  iteration(s).
[INFO 23-08-16 11:08:07.7910 UTC gradient_boosted_trees.cc:310] Final model num-trees:242 valid-loss:0.574698 valid-accuracy:0.871625
[INFO 23-08-16 11:08:07.7922 UTC hyperparameters_optimizer.cc:582] [8/50] Score: -0.574698 / -0.569154 HParams: fields { name: "min_examples" value { integer: 2 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 4 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.15 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 23-08-16 11:08:07.7931 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:07.7932 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:07.7991 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:07.8445 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.082622 train-accuracy:0.761895 valid-loss:1.140940 valid-accuracy:0.736609
[INFO 23-08-16 11:08:08.2101 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.488794 train-accuracy:0.890031 valid-loss:0.571949 valid-accuracy:0.873395
[INFO 23-08-16 11:08:08.2101 UTC gradient_boosted_trees.cc:247] Truncates the model to 284 tree(s) i.e. 284  iteration(s).
[INFO 23-08-16 11:08:08.2102 UTC gradient_boosted_trees.cc:310] Final model num-trees:284 valid-loss:0.571257 valid-accuracy:0.872953
[INFO 23-08-16 11:08:08.2127 UTC hyperparameters_optimizer.cc:582] [9/50] Score: -0.571257 / -0.569154 HParams: fields { name: "min_examples" value { integer: 10 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 23-08-16 11:08:08.2158 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:08.2158 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:08.2204 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:08.2651 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:0.991671 train-accuracy:0.761895 valid-loss:1.045193 valid-accuracy:0.736609
[INFO 23-08-16 11:08:09.2840 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.567582 train-accuracy:0.871475 valid-loss:0.596684 valid-accuracy:0.865870
[INFO 23-08-16 11:08:09.2840 UTC gradient_boosted_trees.cc:247] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 23-08-16 11:08:09.2840 UTC gradient_boosted_trees.cc:310] Final model num-trees:300 valid-loss:0.596684 valid-accuracy:0.865870
[INFO 23-08-16 11:08:09.2850 UTC hyperparameters_optimizer.cc:582] [10/50] Score: -0.596684 / -0.569154 HParams: fields { name: "min_examples" value { integer: 2 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 3 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 23-08-16 11:08:09.2866 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:09.2867 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:09.2915 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:09.3449 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.015325 train-accuracy:0.761895 valid-loss:1.070753 valid-accuracy:0.736609
[INFO 23-08-16 11:08:09.6511 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.499704 train-accuracy:0.890712 valid-loss:0.584889 valid-accuracy:0.869854
[INFO 23-08-16 11:08:09.6511 UTC gradient_boosted_trees.cc:247] Truncates the model to 298 tree(s) i.e. 298  iteration(s).
[INFO 23-08-16 11:08:09.6512 UTC gradient_boosted_trees.cc:310] Final model num-trees:298 valid-loss:0.584790 valid-accuracy:0.869411
[INFO 23-08-16 11:08:09.6544 UTC hyperparameters_optimizer.cc:582] [11/50] Score: -0.58479 / -0.569154 HParams: fields { name: "min_examples" value { integer: 7 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 23-08-16 11:08:09.6593 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:09.6594 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:09.6638 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:09.7372 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.056130 train-accuracy:0.761895 valid-loss:1.113107 valid-accuracy:0.736609
[INFO 23-08-16 11:08:09.7959 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.578549
[INFO 23-08-16 11:08:09.7959 UTC gradient_boosted_trees.cc:247] Truncates the model to 105 tree(s) i.e. 105  iteration(s).
[INFO 23-08-16 11:08:09.7971 UTC gradient_boosted_trees.cc:310] Final model num-trees:105 valid-loss:0.578549 valid-accuracy:0.871625
[INFO 23-08-16 11:08:09.8037 UTC hyperparameters_optimizer.cc:582] [12/50] Score: -0.578549 / -0.569154 HParams: fields { name: "min_examples" value { integer: 2 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 23-08-16 11:08:09.8107 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:09.8107 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:09.8152 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:09.8803 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.081456 train-accuracy:0.761895 valid-loss:1.139474 valid-accuracy:0.736609
[INFO 23-08-16 11:08:10.0550 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.575113
[INFO 23-08-16 11:08:10.0551 UTC gradient_boosted_trees.cc:247] Truncates the model to 242 tree(s) i.e. 242  iteration(s).
[INFO 23-08-16 11:08:10.0553 UTC gradient_boosted_trees.cc:310] Final model num-trees:242 valid-loss:0.575113 valid-accuracy:0.870297
[INFO 23-08-16 11:08:10.0575 UTC hyperparameters_optimizer.cc:582] [13/50] Score: -0.575113 / -0.569154 HParams: fields { name: "min_examples" value { integer: 7 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 23-08-16 11:08:10.0586 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:10.0586 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:10.0638 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:10.1122 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.010652 train-accuracy:0.761895 valid-loss:1.064824 valid-accuracy:0.736609
[INFO 23-08-16 11:08:10.3474 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.574784
[INFO 23-08-16 11:08:10.3474 UTC gradient_boosted_trees.cc:247] Truncates the model to 249 tree(s) i.e. 249  iteration(s).
[INFO 23-08-16 11:08:10.3476 UTC gradient_boosted_trees.cc:310] Final model num-trees:249 valid-loss:0.574784 valid-accuracy:0.867641
[INFO 23-08-16 11:08:10.3491 UTC hyperparameters_optimizer.cc:582] [14/50] Score: -0.574784 / -0.569154 HParams: fields { name: "min_examples" value { integer: 7 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 4 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.15 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 23-08-16 11:08:10.3509 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:10.3510 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:10.3566 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:10.4110 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.013729 train-accuracy:0.761895 valid-loss:1.069266 valid-accuracy:0.736609
[INFO 23-08-16 11:08:10.8116 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.577748
[INFO 23-08-16 11:08:10.8117 UTC gradient_boosted_trees.cc:247] Truncates the model to 89 tree(s) i.e. 89  iteration(s).
[INFO 23-08-16 11:08:10.8120 UTC gradient_boosted_trees.cc:310] Final model num-trees:89 valid-loss:0.577748 valid-accuracy:0.871625
[INFO 23-08-16 11:08:10.8133 UTC hyperparameters_optimizer.cc:582] [15/50] Score: -0.577748 / -0.569154 HParams: fields { name: "min_examples" value { integer: 7 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.15 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:08:10.8143 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:10.8143 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:10.8194 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:10.8644 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.009908 train-accuracy:0.761895 valid-loss:1.065147 valid-accuracy:0.736609
[INFO 23-08-16 11:08:11.2479 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.578216
[INFO 23-08-16 11:08:11.2480 UTC gradient_boosted_trees.cc:247] Truncates the model to 195 tree(s) i.e. 195  iteration(s).
[INFO 23-08-16 11:08:11.2489 UTC gradient_boosted_trees.cc:310] Final model num-trees:195 valid-loss:0.578216 valid-accuracy:0.869854
[INFO 23-08-16 11:08:11.2556 UTC hyperparameters_optimizer.cc:582] [16/50] Score: -0.578216 / -0.569154 HParams: fields { name: "min_examples" value { integer: 5 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 256 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 23-08-16 11:08:11.2566 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:11.2566 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:11.2647 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:11.3506 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.079317 train-accuracy:0.761895 valid-loss:1.137114 valid-accuracy:0.736609
[INFO 23-08-16 11:08:11.3940 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.552215 train-accuracy:0.876248 valid-loss:0.594582 valid-accuracy:0.869411
[INFO 23-08-16 11:08:11.3940 UTC gradient_boosted_trees.cc:247] Truncates the model to 294 tree(s) i.e. 294  iteration(s).
[INFO 23-08-16 11:08:11.3941 UTC gradient_boosted_trees.cc:310] Final model num-trees:294 valid-loss:0.594392 valid-accuracy:0.868969
[INFO 23-08-16 11:08:11.3949 UTC hyperparameters_optimizer.cc:582] [17/50] Score: -0.594392 / -0.569154 HParams: fields { name: "min_examples" value { integer: 2 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 3 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 23-08-16 11:08:11.3962 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:11.3963 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:11.4011 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:11.4157 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.515704 train-accuracy:0.886719 valid-loss:0.592440 valid-accuracy:0.868083
[INFO 23-08-16 11:08:11.4158 UTC gradient_boosted_trees.cc:247] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 23-08-16 11:08:11.4158 UTC gradient_boosted_trees.cc:310] Final model num-trees:300 valid-loss:0.592440 valid-accuracy:0.868083
[INFO 23-08-16 11:08:11.4257 UTC hyperparameters_optimizer.cc:582] [18/50] Score: -0.59244 / -0.569154 HParams: fields { name: "min_examples" value { integer: 10 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 64 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 23-08-16 11:08:11.4423 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:11.4423 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:11.4468 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:11.4613 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.579733
[INFO 23-08-16 11:08:11.4613 UTC gradient_boosted_trees.cc:247] Truncates the model to 78 tree(s) i.e. 78  iteration(s).
[INFO 23-08-16 11:08:11.4627 UTC gradient_boosted_trees.cc:310] Final model num-trees:78 valid-loss:0.579733 valid-accuracy:0.867641
[INFO 23-08-16 11:08:11.4684 UTC hyperparameters_optimizer.cc:582] [19/50] Score: -0.579733 / -0.569154 HParams: fields { name: "min_examples" value { integer: 2 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 23-08-16 11:08:11.4914 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.055888 train-accuracy:0.761895 valid-loss:1.113012 valid-accuracy:0.736609
[INFO 23-08-16 11:08:11.4956 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.586668
[INFO 23-08-16 11:08:11.4956 UTC gradient_boosted_trees.cc:247] Truncates the model to 61 tree(s) i.e. 61  iteration(s).
[INFO 23-08-16 11:08:11.4962 UTC gradient_boosted_trees.cc:310] Final model num-trees:61 valid-loss:0.586668 valid-accuracy:0.868969
[INFO 23-08-16 11:08:11.4974 UTC hyperparameters_optimizer.cc:582] [20/50] Score: -0.586668 / -0.569154 HParams: fields { name: "min_examples" value { integer: 10 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.15 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 23-08-16 11:08:11.5397 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.012875 train-accuracy:0.761895 valid-loss:1.067941 valid-accuracy:0.736609
[INFO 23-08-16 11:08:12.4754 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.576467
[INFO 23-08-16 11:08:12.4754 UTC gradient_boosted_trees.cc:247] Truncates the model to 147 tree(s) i.e. 147  iteration(s).
[INFO 23-08-16 11:08:12.4757 UTC gradient_boosted_trees.cc:310] Final model num-trees:147 valid-loss:0.576467 valid-accuracy:0.870739
[INFO 23-08-16 11:08:12.4773 UTC hyperparameters_optimizer.cc:582] [21/50] Score: -0.576467 / -0.569154 HParams: fields { name: "min_examples" value { integer: 5 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.15 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 23-08-16 11:08:12.8409 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.498302 train-accuracy:0.892222 valid-loss:0.585352 valid-accuracy:0.870297
[INFO 23-08-16 11:08:12.8409 UTC gradient_boosted_trees.cc:247] Truncates the model to 296 tree(s) i.e. 296  iteration(s).
[INFO 23-08-16 11:08:12.8410 UTC gradient_boosted_trees.cc:310] Final model num-trees:296 valid-loss:0.585279 valid-accuracy:0.870297
[INFO 23-08-16 11:08:12.8441 UTC hyperparameters_optimizer.cc:582] [22/50] Score: -0.585279 / -0.569154 HParams: fields { name: "min_examples" value { integer: 10 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 23-08-16 11:08:13.1007 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.579464
[INFO 23-08-16 11:08:13.1008 UTC gradient_boosted_trees.cc:247] Truncates the model to 129 tree(s) i.e. 129  iteration(s).
[INFO 23-08-16 11:08:13.1018 UTC gradient_boosted_trees.cc:310] Final model num-trees:129 valid-loss:0.579464 valid-accuracy:0.870297
[INFO 23-08-16 11:08:13.1084 UTC hyperparameters_optimizer.cc:582] [23/50] Score: -0.579464 / -0.569154 HParams: fields { name: "min_examples" value { integer: 5 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 128 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:08:13.1165 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.511416 train-accuracy:0.884381 valid-loss:0.572223 valid-accuracy:0.874723
[INFO 23-08-16 11:08:13.1166 UTC gradient_boosted_trees.cc:247] Truncates the model to 291 tree(s) i.e. 291  iteration(s).
[INFO 23-08-16 11:08:13.1166 UTC gradient_boosted_trees.cc:310] Final model num-trees:291 valid-loss:0.572029 valid-accuracy:0.874723
[INFO 23-08-16 11:08:13.1187 UTC hyperparameters_optimizer.cc:582] [24/50] Score: -0.572029 / -0.569154 HParams: fields { name: "min_examples" value { integer: 10 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:08:13.2108 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.578696
[INFO 23-08-16 11:08:13.2108 UTC gradient_boosted_trees.cc:247] Truncates the model to 228 tree(s) i.e. 228  iteration(s).
[INFO 23-08-16 11:08:13.2115 UTC gradient_boosted_trees.cc:310] Final model num-trees:228 valid-loss:0.578696 valid-accuracy:0.870739
[INFO 23-08-16 11:08:13.2163 UTC hyperparameters_optimizer.cc:582] [25/50] Score: -0.578696 / -0.569154 HParams: fields { name: "min_examples" value { integer: 5 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 32 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 23-08-16 11:08:13.4696 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.574801
[INFO 23-08-16 11:08:13.4696 UTC gradient_boosted_trees.cc:247] Truncates the model to 83 tree(s) i.e. 83  iteration(s).
[INFO 23-08-16 11:08:13.4702 UTC gradient_boosted_trees.cc:310] Final model num-trees:83 valid-loss:0.574801 valid-accuracy:0.870297
[INFO 23-08-16 11:08:13.4733 UTC hyperparameters_optimizer.cc:582] [26/50] Score: -0.574801 / -0.569154 HParams: fields { name: "min_examples" value { integer: 7 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 23-08-16 11:08:13.8788 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.523350 train-accuracy:0.883992 valid-loss:0.583351 valid-accuracy:0.868526
[INFO 23-08-16 11:08:13.8788 UTC gradient_boosted_trees.cc:247] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 23-08-16 11:08:13.8789 UTC gradient_boosted_trees.cc:310] Final model num-trees:300 valid-loss:0.583351 valid-accuracy:0.868526
[INFO 23-08-16 11:08:13.8882 UTC hyperparameters_optimizer.cc:582] [27/50] Score: -0.583351 / -0.569154 HParams: fields { name: "min_examples" value { integer: 7 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 128 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 23-08-16 11:08:13.9364 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.587919
[INFO 23-08-16 11:08:13.9365 UTC gradient_boosted_trees.cc:247] Truncates the model to 86 tree(s) i.e. 86  iteration(s).
[INFO 23-08-16 11:08:13.9380 UTC gradient_boosted_trees.cc:310] Final model num-trees:86 valid-loss:0.587919 valid-accuracy:0.866755
[INFO 23-08-16 11:08:13.9434 UTC hyperparameters_optimizer.cc:582] [28/50] Score: -0.587919 / -0.569154 HParams: fields { name: "min_examples" value { integer: 2 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 23-08-16 11:08:14.2934 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.575133
[INFO 23-08-16 11:08:14.2934 UTC gradient_boosted_trees.cc:247] Truncates the model to 174 tree(s) i.e. 174  iteration(s).
[INFO 23-08-16 11:08:14.2941 UTC gradient_boosted_trees.cc:310] Final model num-trees:174 valid-loss:0.575133 valid-accuracy:0.872067
[INFO 23-08-16 11:08:14.3012 UTC hyperparameters_optimizer.cc:582] [29/50] Score: -0.575133 / -0.569154 HParams: fields { name: "min_examples" value { integer: 5 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 23-08-16 11:08:14.4387 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.578764
[INFO 23-08-16 11:08:14.4388 UTC gradient_boosted_trees.cc:247] Truncates the model to 186 tree(s) i.e. 186  iteration(s).
[INFO 23-08-16 11:08:14.4393 UTC gradient_boosted_trees.cc:310] Final model num-trees:186 valid-loss:0.578764 valid-accuracy:0.873395
[INFO 23-08-16 11:08:14.4425 UTC hyperparameters_optimizer.cc:582] [30/50] Score: -0.578764 / -0.569154 HParams: fields { name: "min_examples" value { integer: 5 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 6 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:08:14.5569 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.523150 train-accuracy:0.886135 valid-loss:0.593369 valid-accuracy:0.869411
[INFO 23-08-16 11:08:14.5569 UTC gradient_boosted_trees.cc:247] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 23-08-16 11:08:14.5570 UTC gradient_boosted_trees.cc:310] Final model num-trees:300 valid-loss:0.593369 valid-accuracy:0.869411
[INFO 23-08-16 11:08:14.5615 UTC hyperparameters_optimizer.cc:582] [31/50] Score: -0.593369 / -0.569154 HParams: fields { name: "min_examples" value { integer: 2 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 32 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 23-08-16 11:08:14.6584 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.57629
[INFO 23-08-16 11:08:14.6584 UTC gradient_boosted_trees.cc:247] Truncates the model to 151 tree(s) i.e. 151  iteration(s).
[INFO 23-08-16 11:08:14.6587 UTC gradient_boosted_trees.cc:310] Final model num-trees:151 valid-loss:0.576290 valid-accuracy:0.869411
[INFO 23-08-16 11:08:14.6600 UTC hyperparameters_optimizer.cc:582] [32/50] Score: -0.57629 / -0.569154 HParams: fields { name: "min_examples" value { integer: 10 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 23-08-16 11:08:15.0826 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.568287
[INFO 23-08-16 11:08:15.0827 UTC gradient_boosted_trees.cc:247] Truncates the model to 117 tree(s) i.e. 117  iteration(s).
[INFO 23-08-16 11:08:15.0832 UTC gradient_boosted_trees.cc:310] Final model num-trees:117 valid-loss:0.568287 valid-accuracy:0.873395
[INFO 23-08-16 11:08:15.0872 UTC hyperparameters_optimizer.cc:582] [33/50] Score: -0.568287 / -0.568287 HParams: fields { name: "min_examples" value { integer: 5 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 256 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 23-08-16 11:08:15.3037 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.571936
[INFO 23-08-16 11:08:15.3038 UTC gradient_boosted_trees.cc:247] Truncates the model to 159 tree(s) i.e. 159  iteration(s).
[INFO 23-08-16 11:08:15.3041 UTC gradient_boosted_trees.cc:310] Final model num-trees:159 valid-loss:0.571936 valid-accuracy:0.872067
[INFO 23-08-16 11:08:15.3064 UTC hyperparameters_optimizer.cc:582] [34/50] Score: -0.571936 / -0.568287 HParams: fields { name: "min_examples" value { integer: 7 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 32 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 23-08-16 11:08:15.6233 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.481432 train-accuracy:0.895339 valid-loss:0.584104 valid-accuracy:0.869854
[INFO 23-08-16 11:08:15.6234 UTC gradient_boosted_trees.cc:247] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 23-08-16 11:08:15.6234 UTC gradient_boosted_trees.cc:310] Final model num-trees:300 valid-loss:0.584104 valid-accuracy:0.869854
[INFO 23-08-16 11:08:15.6356 UTC hyperparameters_optimizer.cc:582] [35/50] Score: -0.584104 / -0.568287 HParams: fields { name: "min_examples" value { integer: 5 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 23-08-16 11:08:15.9841 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.581114
[INFO 23-08-16 11:08:15.9842 UTC gradient_boosted_trees.cc:247] Truncates the model to 242 tree(s) i.e. 242  iteration(s).
[INFO 23-08-16 11:08:15.9845 UTC gradient_boosted_trees.cc:310] Final model num-trees:242 valid-loss:0.581114 valid-accuracy:0.867198
[INFO 23-08-16 11:08:15.9866 UTC hyperparameters_optimizer.cc:582] [36/50] Score: -0.581114 / -0.568287 HParams: fields { name: "min_examples" value { integer: 7 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 23-08-16 11:08:16.2511 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.542830 train-accuracy:0.881654 valid-loss:0.593285 valid-accuracy:0.867198
[INFO 23-08-16 11:08:16.2511 UTC gradient_boosted_trees.cc:247] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 23-08-16 11:08:16.2511 UTC gradient_boosted_trees.cc:310] Final model num-trees:300 valid-loss:0.593285 valid-accuracy:0.867198
[INFO 23-08-16 11:08:16.2534 UTC hyperparameters_optimizer.cc:582] [37/50] Score: -0.593285 / -0.568287 HParams: fields { name: "min_examples" value { integer: 5 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:08:16.5678 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.588445 train-accuracy:0.867433 valid-loss:0.620650 valid-accuracy:0.862328
[INFO 23-08-16 11:08:16.5678 UTC gradient_boosted_trees.cc:247] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 23-08-16 11:08:16.5678 UTC gradient_boosted_trees.cc:310] Final model num-trees:300 valid-loss:0.620650 valid-accuracy:0.862328
[INFO 23-08-16 11:08:16.5688 UTC hyperparameters_optimizer.cc:582] [38/50] Score: -0.62065 / -0.568287 HParams: fields { name: "min_examples" value { integer: 5 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 4 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 23-08-16 11:08:17.2407 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.542858 train-accuracy:0.881800 valid-loss:0.595354 valid-accuracy:0.866755
[INFO 23-08-16 11:08:17.2407 UTC gradient_boosted_trees.cc:247] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 23-08-16 11:08:17.2408 UTC gradient_boosted_trees.cc:310] Final model num-trees:300 valid-loss:0.595354 valid-accuracy:0.866755
[INFO 23-08-16 11:08:17.2429 UTC hyperparameters_optimizer.cc:582] [39/50] Score: -0.595354 / -0.568287 HParams: fields { name: "min_examples" value { integer: 2 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 23-08-16 11:08:17.3207 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.519893 train-accuracy:0.882725 valid-loss:0.589835 valid-accuracy:0.868083
[INFO 23-08-16 11:08:17.3207 UTC gradient_boosted_trees.cc:247] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 23-08-16 11:08:17.3207 UTC gradient_boosted_trees.cc:310] Final model num-trees:300 valid-loss:0.589835 valid-accuracy:0.868083
[INFO 23-08-16 11:08:17.3268 UTC hyperparameters_optimizer.cc:582] [40/50] Score: -0.589835 / -0.568287 HParams: fields { name: "min_examples" value { integer: 7 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 128 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 23-08-16 11:08:18.2298 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.510029 train-accuracy:0.890566 valid-loss:0.588633 valid-accuracy:0.866755
[INFO 23-08-16 11:08:18.2299 UTC gradient_boosted_trees.cc:247] Truncates the model to 299 tree(s) i.e. 299  iteration(s).
[INFO 23-08-16 11:08:18.2299 UTC gradient_boosted_trees.cc:310] Final model num-trees:299 valid-loss:0.588569 valid-accuracy:0.865870
[INFO 23-08-16 11:08:18.2339 UTC hyperparameters_optimizer.cc:582] [41/50] Score: -0.588569 / -0.568287 HParams: fields { name: "min_examples" value { integer: 2 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 32 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:08:18.7000 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.566897
[INFO 23-08-16 11:08:18.7000 UTC gradient_boosted_trees.cc:247] Truncates the model to 112 tree(s) i.e. 112  iteration(s).
[INFO 23-08-16 11:08:18.7005 UTC gradient_boosted_trees.cc:310] Final model num-trees:112 valid-loss:0.566897 valid-accuracy:0.873395
[INFO 23-08-16 11:08:18.7053 UTC hyperparameters_optimizer.cc:582] [42/50] Score: -0.566897 / -0.566897 HParams: fields { name: "min_examples" value { integer: 2 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 64 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 23-08-16 11:08:20.3548 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.466037 train-accuracy:0.896557 valid-loss:0.571031 valid-accuracy:0.869854
[INFO 23-08-16 11:08:20.3548 UTC gradient_boosted_trees.cc:247] Truncates the model to 294 tree(s) i.e. 294  iteration(s).
[INFO 23-08-16 11:08:20.3549 UTC gradient_boosted_trees.cc:310] Final model num-trees:294 valid-loss:0.570658 valid-accuracy:0.871625
[INFO 23-08-16 11:08:20.3583 UTC hyperparameters_optimizer.cc:582] [43/50] Score: -0.570658 / -0.566897 HParams: fields { name: "min_examples" value { integer: 5 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 6 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:08:20.5117 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.466786 train-accuracy:0.898115 valid-loss:0.574857 valid-accuracy:0.870739
[INFO 23-08-16 11:08:20.5118 UTC gradient_boosted_trees.cc:247] Truncates the model to 293 tree(s) i.e. 293  iteration(s).
[INFO 23-08-16 11:08:20.5119 UTC gradient_boosted_trees.cc:310] Final model num-trees:293 valid-loss:0.574461 valid-accuracy:0.870739
[INFO 23-08-16 11:08:20.5151 UTC hyperparameters_optimizer.cc:582] [44/50] Score: -0.574461 / -0.566897 HParams: fields { name: "min_examples" value { integer: 10 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 6 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:08:20.7569 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.572158
[INFO 23-08-16 11:08:20.7569 UTC gradient_boosted_trees.cc:247] Truncates the model to 209 tree(s) i.e. 209  iteration(s).
[INFO 23-08-16 11:08:20.7574 UTC gradient_boosted_trees.cc:310] Final model num-trees:209 valid-loss:0.572158 valid-accuracy:0.872953
[INFO 23-08-16 11:08:20.7623 UTC hyperparameters_optimizer.cc:582] [45/50] Score: -0.572158 / -0.566897 HParams: fields { name: "min_examples" value { integer: 7 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 64 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:08:21.3810 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.524785 train-accuracy:0.882871 valid-loss:0.586497 valid-accuracy:0.869411
[INFO 23-08-16 11:08:21.3810 UTC gradient_boosted_trees.cc:247] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 23-08-16 11:08:21.3810 UTC gradient_boosted_trees.cc:310] Final model num-trees:300 valid-loss:0.586497 valid-accuracy:0.869411
[INFO 23-08-16 11:08:21.3853 UTC hyperparameters_optimizer.cc:582] [46/50] Score: -0.586497 / -0.566897 HParams: fields { name: "min_examples" value { integer: 2 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 32 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:08:21.8747 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.531623 train-accuracy:0.882871 valid-loss:0.586301 valid-accuracy:0.871625
[INFO 23-08-16 11:08:21.8748 UTC gradient_boosted_trees.cc:247] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 23-08-16 11:08:21.8748 UTC gradient_boosted_trees.cc:310] Final model num-trees:300 valid-loss:0.586301 valid-accuracy:0.871625
[INFO 23-08-16 11:08:21.8784 UTC hyperparameters_optimizer.cc:582] [47/50] Score: -0.586301 / -0.566897 HParams: fields { name: "min_examples" value { integer: 5 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 6 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:08:24.0003 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.479808 train-accuracy:0.892174 valid-loss:0.580708 valid-accuracy:0.871182
[INFO 23-08-16 11:08:24.0004 UTC gradient_boosted_trees.cc:247] Truncates the model to 299 tree(s) i.e. 299  iteration(s).
[INFO 23-08-16 11:08:24.0004 UTC gradient_boosted_trees.cc:310] Final model num-trees:299 valid-loss:0.580696 valid-accuracy:0.871625
[INFO 23-08-16 11:08:24.0105 UTC hyperparameters_optimizer.cc:582] [48/50] Score: -0.580696 / -0.566897 HParams: fields { name: "min_examples" value { integer: 7 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 23-08-16 11:08:24.6673 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.573524
[INFO 23-08-16 11:08:24.6673 UTC gradient_boosted_trees.cc:247] Truncates the model to 252 tree(s) i.e. 252  iteration(s).
[INFO 23-08-16 11:08:24.6678 UTC gradient_boosted_trees.cc:310] Final model num-trees:252 valid-loss:0.573524 valid-accuracy:0.868083
[INFO 23-08-16 11:08:24.6718 UTC hyperparameters_optimizer.cc:582] [49/50] Score: -0.573524 / -0.566897 HParams: fields { name: "min_examples" value { integer: 2 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 6 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:08:25.0729 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.503526 train-accuracy:0.890420 valid-loss:0.580347 valid-accuracy:0.870297
[INFO 23-08-16 11:08:25.0729 UTC gradient_boosted_trees.cc:247] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 23-08-16 11:08:25.0730 UTC gradient_boosted_trees.cc:310] Final model num-trees:300 valid-loss:0.580347 valid-accuracy:0.870297
[INFO 23-08-16 11:08:25.0785 UTC hyperparameters_optimizer.cc:582] [50/50] Score: -0.580347 / -0.566897 HParams: fields { name: "min_examples" value { integer: 10 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 128 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:08:25.1012 UTC hyperparameters_optimizer.cc:219] Best hyperparameters:
fields {
  name: "min_examples"
  value {
    integer: 2
  }
}
fields {
  name: "categorical_algorithm"
  value {
    categorical: "RANDOM"
  }
}
fields {
  name: "growing_strategy"
  value {
    categorical: "BEST_FIRST_GLOBAL"
  }
}
fields {
  name: "max_num_nodes"
  value {
    integer: 64
  }
}
fields {
  name: "use_hessian_gain"
  value {
    categorical: "true"
  }
}
fields {
  name: "shrinkage"
  value {
    real: 0.1
  }
}
fields {
  name: "num_candidate_attributes_ratio"
  value {
    real: 0.9
  }
}

[INFO 23-08-16 11:08:25.1016 UTC kernel.cc:926] Export model in log directory: /tmpfs/tmp/tmpzdzgno07 with prefix 752bc47fe3694f88
[INFO 23-08-16 11:08:25.1108 UTC kernel.cc:944] Save model in resources
[INFO 23-08-16 11:08:25.1135 UTC abstract_model.cc:849] Model self evaluation:
Task: CLASSIFICATION
Label: __LABEL
Loss (BINOMIAL_LOG_LIKELIHOOD): 0.566897

Accuracy: 0.873395  CI95[W][0 1]
ErrorRate: : 0.126605


Confusion Table:
truth\prediction
   0     1    2
0  0     0    0
1  0  1572   92
2  0   194  401
Total: 2259

One vs other classes:

[INFO 23-08-16 11:08:25.1327 UTC kernel.cc:1243] Loading model from path /tmpfs/tmp/tmpzdzgno07/model/ with prefix 752bc47fe3694f88
[INFO 23-08-16 11:08:25.1690 UTC abstract_model.cc:1311] Engine "GradientBoostedTreesQuickScorerExtended" built
[INFO 23-08-16 11:08:25.1691 UTC kernel.cc:1075] Use fast generic engine


Model trained in 0:00:21.820976
Compiling model...
Model compiled.
CPU times: user 7min 2s, sys: 576 ms, total: 7min 3s
Wall time: 22.4 s





<keras.src.callbacks.History at 0x7f2410cdc040>
python 复制代码
# 评估模型
tuned_model.compile(["accuracy"])  # 编译模型,使用"accuracy"作为评估指标

# 使用测试数据集评估调整后的模型
tuned_test_accuracy = tuned_model.evaluate(test_ds, return_dict=True, verbose=0)["accuracy"]  # 返回测试数据集的准确率print(f"Test accuracy with the TF-DF hyper-parameter tuner: {tuned_test_accuracy:.4f}")  # 打印使用TF-DF超参数调整器得到的测试准确率
Test accuracy with the TF-DF hyper-parameter tuner: 0.8744

在模型检查器中,可以查看试验的超参数和目标分数。score值始终被最大化。在这个例子中,分数是验证数据集上的负对数损失(自动选择)。

python 复制代码
# 显示调优日志。
# 调用tuned_model的make_inspector()方法,返回一个调优模型的检查器对象。
# 调用检查器对象的tuning_logs()方法,返回调优日志。
tuning_logs = tuned_model.make_inspector().tuning_logs()
tuning_logs.head()

| | score | evaluation_time | best | min_examples | categorical_algorithm | growing_strategy | max_depth | use_hessian_gain | shrinkage | num_candidate_attributes_ratio | max_num_nodes |
| 0 | -0.590370 | 2.080748 | False | 7 | CART | LOCAL | 3.0 | true | 0.15 | 0.2 | NaN |
| 1 | -0.583674 | 2.107974 | False | 5 | CART | LOCAL | 8.0 | true | 0.15 | 0.2 | NaN |
| 2 | -0.581734 | 3.304178 | False | 10 | CART | LOCAL | 3.0 | true | 0.15 | 1.0 | NaN |
| 3 | -0.585214 | 3.441370 | False | 10 | RANDOM | LOCAL | 3.0 | true | 0.15 | 0.5 | NaN |

4 -0.588227 3.881257 False 7 CART BEST_FIRST_GLOBAL NaN false 0.10 0.2 64.0

单行中的 best=True 是在最终模型中使用的行。

python 复制代码
# 获取最佳超参数的日志记录
best_hyperparameters = tuning_logs[tuning_logs.best]

# 获取第一条最佳超参数的日志记录
first_best_hyperparameters = best_hyperparameters.iloc[0]
score                                     -0.566897
evaluation_time                            15.33206
best                                           True
min_examples                                      2
categorical_algorithm                        RANDOM
growing_strategy                  BEST_FIRST_GLOBAL
max_depth                                       NaN
use_hessian_gain                               true
shrinkage                                       0.1
num_candidate_attributes_ratio                  0.9
max_num_nodes                                  64.0
Name: 41, dtype: object

注意: 值为NaN的参数是未设置的条件参数。

接下来,我们绘制调整过程中最佳分数的评估结果。

python 复制代码
# 设置图形的大小
plt.figure(figsize=(10, 5))

# 绘制当前试验的得分曲线
plt.plot(tuning_logs["score"], label="current trial")

# 绘制历史最佳试验的得分曲线
plt.plot(tuning_logs["score"].cummax(), label="best trial")

# 设置x轴标签
plt.xlabel("Tuning step")

# 设置y轴标签
plt.ylabel("Tuning score")

# 添加图例
plt.legend()

# 显示图形
plt.show()

使用自动化超参数调整和自动定义超参数的模型训练(推荐方法)

与之前一样,通过指定模型的tuner构造函数参数来启用超参数调整。设置use_predefined_hps=True以自动配置超参数的搜索空间。

**注意:**自动超参数配置会探索一些强大但训练速度较慢的超参数。例如,斜分割(在上一节中被注释/禁用;参见SPARSE_OBLIQUE)会被测试。这意味着调整过程会更慢,但希望能得到质量更高的结果。

python 复制代码
# 设置代码运行时间和单元格高度
%%time
%set_cell_height 300

# 创建一个随机搜索调谐器,进行50次试验,并使用自动化的超参数配置。
tuner = tfdf.tuner.RandomSearch(num_trials=50, use_predefined_hps=True)

# 定义并训练模型
tuned_model = tfdf.keras.GradientBoostedTreesModel(tuner=tuner)
tuned_model.fit(train_ds, verbose=2)
<IPython.core.display.Javascript object>


Warning: The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.


WARNING:absl:The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.


Use /tmpfs/tmp/tmpfhjg70bi as temporary training directory
Reading training dataset...
Training tensor examples:
Features: {'age': <tf.Tensor 'data:0' shape=(None,) dtype=int64>, 'workclass': <tf.Tensor 'data_1:0' shape=(None,) dtype=string>, 'fnlwgt': <tf.Tensor 'data_2:0' shape=(None,) dtype=int64>, 'education': <tf.Tensor 'data_3:0' shape=(None,) dtype=string>, 'education_num': <tf.Tensor 'data_4:0' shape=(None,) dtype=int64>, 'marital_status': <tf.Tensor 'data_5:0' shape=(None,) dtype=string>, 'occupation': <tf.Tensor 'data_6:0' shape=(None,) dtype=string>, 'relationship': <tf.Tensor 'data_7:0' shape=(None,) dtype=string>, 'race': <tf.Tensor 'data_8:0' shape=(None,) dtype=string>, 'sex': <tf.Tensor 'data_9:0' shape=(None,) dtype=string>, 'capital_gain': <tf.Tensor 'data_10:0' shape=(None,) dtype=int64>, 'capital_loss': <tf.Tensor 'data_11:0' shape=(None,) dtype=int64>, 'hours_per_week': <tf.Tensor 'data_12:0' shape=(None,) dtype=int64>, 'native_country': <tf.Tensor 'data_13:0' shape=(None,) dtype=string>}
Label: Tensor("data_14:0", shape=(None,), dtype=int64)
Weights: None
Normalized tensor features:
 {'age': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast:0' shape=(None,) dtype=float32>), 'workclass': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_1:0' shape=(None,) dtype=string>), 'fnlwgt': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_1:0' shape=(None,) dtype=float32>), 'education': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_3:0' shape=(None,) dtype=string>), 'education_num': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_2:0' shape=(None,) dtype=float32>), 'marital_status': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_5:0' shape=(None,) dtype=string>), 'occupation': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_6:0' shape=(None,) dtype=string>), 'relationship': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_7:0' shape=(None,) dtype=string>), 'race': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_8:0' shape=(None,) dtype=string>), 'sex': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_9:0' shape=(None,) dtype=string>), 'capital_gain': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_3:0' shape=(None,) dtype=float32>), 'capital_loss': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_4:0' shape=(None,) dtype=float32>), 'hours_per_week': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_5:0' shape=(None,) dtype=float32>), 'native_country': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_13:0' shape=(None,) dtype=string>)}


[WARNING 23-08-16 11:08:25.8988 UTC gradient_boosted_trees.cc:1818] "goss_alpha" set but "sampling_method" not equal to "GOSS".
[WARNING 23-08-16 11:08:25.8988 UTC gradient_boosted_trees.cc:1829] "goss_beta" set but "sampling_method" not equal to "GOSS".
[WARNING 23-08-16 11:08:25.8988 UTC gradient_boosted_trees.cc:1843] "selective_gradient_boosting_ratio" set but "sampling_method" not equal to "SELGB".


Training dataset read in 0:00:00.378785. Found 22792 examples.
Training model...


[INFO 23-08-16 11:08:26.2894 UTC kernel.cc:773] Start Yggdrasil model training
[INFO 23-08-16 11:08:26.2895 UTC kernel.cc:774] Collect training examples
[INFO 23-08-16 11:08:26.2895 UTC kernel.cc:787] Dataspec guide:
column_guides {
  column_name_pattern: "^__LABEL$"
  type: CATEGORICAL
  categorial {
    min_vocab_frequency: 0
    max_vocab_count: -1
  }
}
default_column_guide {
  categorial {
    max_vocab_count: 2000
  }
  discretized_numerical {
    maximum_num_bins: 255
  }
}
ignore_columns_without_guides: false
detect_numerical_as_discretized_numerical: false

[INFO 23-08-16 11:08:26.2896 UTC kernel.cc:393] Number of batches: 23
[INFO 23-08-16 11:08:26.2896 UTC kernel.cc:394] Number of examples: 22792
[INFO 23-08-16 11:08:26.2970 UTC data_spec_inference.cc:305] 1 item(s) have been pruned (i.e. they are considered out of dictionary) for the column native_country (40 item(s) left) because min_value_count=5 and max_number_of_unique_values=2000
[INFO 23-08-16 11:08:26.2970 UTC data_spec_inference.cc:305] 1 item(s) have been pruned (i.e. they are considered out of dictionary) for the column occupation (13 item(s) left) because min_value_count=5 and max_number_of_unique_values=2000
[INFO 23-08-16 11:08:26.2971 UTC data_spec_inference.cc:305] 1 item(s) have been pruned (i.e. they are considered out of dictionary) for the column workclass (7 item(s) left) because min_value_count=5 and max_number_of_unique_values=2000
[INFO 23-08-16 11:08:26.3035 UTC kernel.cc:794] Training dataset:
Number of records: 22792
Number of columns: 15

Number of columns by type:
	CATEGORICAL: 9 (60%)
	NUMERICAL: 6 (40%)

Columns:

CATEGORICAL: 9 (60%)
	0: "__LABEL" CATEGORICAL integerized vocab-size:3 no-ood-item
	4: "education" CATEGORICAL has-dict vocab-size:17 zero-ood-items most-frequent:"HS-grad" 7340 (32.2043%)
	8: "marital_status" CATEGORICAL has-dict vocab-size:8 zero-ood-items most-frequent:"Married-civ-spouse" 10431 (45.7661%)
	9: "native_country" CATEGORICAL num-nas:407 (1.78571%) has-dict vocab-size:41 num-oods:1 (0.00446728%) most-frequent:"United-States" 20436 (91.2933%)
	10: "occupation" CATEGORICAL num-nas:1260 (5.52826%) has-dict vocab-size:14 num-oods:1 (0.00464425%) most-frequent:"Prof-specialty" 2870 (13.329%)
	11: "race" CATEGORICAL has-dict vocab-size:6 zero-ood-items most-frequent:"White" 19467 (85.4115%)
	12: "relationship" CATEGORICAL has-dict vocab-size:7 zero-ood-items most-frequent:"Husband" 9191 (40.3256%)
	13: "sex" CATEGORICAL has-dict vocab-size:3 zero-ood-items most-frequent:"Male" 15165 (66.5365%)
	14: "workclass" CATEGORICAL num-nas:1257 (5.51509%) has-dict vocab-size:8 num-oods:1 (0.0046436%) most-frequent:"Private" 15879 (73.7358%)

NUMERICAL: 6 (40%)
	1: "age" NUMERICAL mean:38.6153 min:17 max:90 sd:13.661
	2: "capital_gain" NUMERICAL mean:1081.9 min:0 max:99999 sd:7509.48
	3: "capital_loss" NUMERICAL mean:87.2806 min:0 max:4356 sd:403.01
	5: "education_num" NUMERICAL mean:10.0927 min:1 max:16 sd:2.56427
	6: "fnlwgt" NUMERICAL mean:189879 min:12285 max:1.4847e+06 sd:106423
	7: "hours_per_week" NUMERICAL mean:40.3955 min:1 max:99 sd:12.249

Terminology:
	nas: Number of non-available (i.e. missing) values.
	ood: Out of dictionary.
	manually-defined: Attribute which type is manually defined by the user i.e. the type was not automatically inferred.
	tokenized: The attribute value is obtained through tokenization.
	has-dict: The attribute is attached to a string dictionary e.g. a categorical attribute stored as a string.
	vocab-size: Number of unique values.

[INFO 23-08-16 11:08:26.3035 UTC kernel.cc:810] Configure learner
[WARNING 23-08-16 11:08:26.3038 UTC gradient_boosted_trees.cc:1818] "goss_alpha" set but "sampling_method" not equal to "GOSS".
[WARNING 23-08-16 11:08:26.3038 UTC gradient_boosted_trees.cc:1829] "goss_beta" set but "sampling_method" not equal to "GOSS".
[WARNING 23-08-16 11:08:26.3038 UTC gradient_boosted_trees.cc:1843] "selective_gradient_boosting_ratio" set but "sampling_method" not equal to "SELGB".
[INFO 23-08-16 11:08:26.3039 UTC kernel.cc:824] Training config:
learner: "HYPERPARAMETER_OPTIMIZER"
features: "^age$"
features: "^capital_gain$"
features: "^capital_loss$"
features: "^education$"
features: "^education_num$"
features: "^fnlwgt$"
features: "^hours_per_week$"
features: "^marital_status$"
features: "^native_country$"
features: "^occupation$"
features: "^race$"
features: "^relationship$"
features: "^sex$"
features: "^workclass$"
label: "^__LABEL$"
task: CLASSIFICATION
metadata {
  framework: "TF Keras"
}
[yggdrasil_decision_forests.model.hyperparameters_optimizer_v2.proto.hyperparameters_optimizer_config] {
  base_learner {
    learner: "GRADIENT_BOOSTED_TREES"
    features: "^age$"
    features: "^capital_gain$"
    features: "^capital_loss$"
    features: "^education$"
    features: "^education_num$"
    features: "^fnlwgt$"
    features: "^hours_per_week$"
    features: "^marital_status$"
    features: "^native_country$"
    features: "^occupation$"
    features: "^race$"
    features: "^relationship$"
    features: "^sex$"
    features: "^workclass$"
    label: "^__LABEL$"
    task: CLASSIFICATION
    random_seed: 123456
    pure_serving_model: false
    [yggdrasil_decision_forests.model.gradient_boosted_trees.proto.gradient_boosted_trees_config] {
      num_trees: 300
      decision_tree {
        max_depth: 6
        min_examples: 5
        in_split_min_examples_check: true
        keep_non_leaf_label_distribution: true
        num_candidate_attributes: -1
        missing_value_policy: GLOBAL_IMPUTATION
        allow_na_conditions: false
        categorical_set_greedy_forward {
          sampling: 0.1
          max_num_items: -1
          min_item_frequency: 1
        }
        growing_strategy_local {
        }
        categorical {
          cart {
          }
        }
        axis_aligned_split {
        }
        internal {
          sorting_strategy: PRESORTED
        }
        uplift {
          min_examples_in_treatment: 5
          split_score: KULLBACK_LEIBLER
        }
      }
      shrinkage: 0.1
      loss: DEFAULT
      validation_set_ratio: 0.1
      validation_interval_in_trees: 1
      early_stopping: VALIDATION_LOSS_INCREASE
      early_stopping_num_trees_look_ahead: 30
      l2_regularization: 0
      lambda_loss: 1
      mart {
      }
      adapt_subsample_for_maximum_training_duration: false
      l1_regularization: 0
      use_hessian_gain: false
      l2_regularization_categorical: 1
      stochastic_gradient_boosting {
        ratio: 1
      }
      apply_link_function: true
      compute_permutation_variable_importance: false
      binary_focal_loss_options {
        misprediction_exponent: 2
        positive_sample_coefficient: 0.5
      }
      early_stopping_initial_iteration: 10
    }
  }
  optimizer {
    optimizer_key: "RANDOM"
    [yggdrasil_decision_forests.model.hyperparameters_optimizer_v2.proto.random] {
      num_trials: 50
    }
  }
  base_learner_deployment {
    num_threads: 1
  }
  predefined_search_space {
  }
}

[INFO 23-08-16 11:08:26.3040 UTC kernel.cc:827] Deployment config:
cache_path: "/tmpfs/tmp/tmpfhjg70bi/working_cache"
num_threads: 32
try_resume_training: true

[INFO 23-08-16 11:08:26.3042 UTC kernel.cc:889] Train model
[INFO 23-08-16 11:08:26.3045 UTC hyperparameters_optimizer.cc:209] Hyperparameter search space:
fields {
  name: "split_axis"
  discrete_candidates {
    possible_values {
      categorical: "AXIS_ALIGNED"
    }
    possible_values {
      categorical: "SPARSE_OBLIQUE"
    }
  }
  children {
    name: "sparse_oblique_projection_density_factor"
    discrete_candidates {
      possible_values {
        real: 1
      }
      possible_values {
        real: 2
      }
      possible_values {
        real: 3
      }
      possible_values {
        real: 4
      }
      possible_values {
        real: 5
      }
    }
    parent_discrete_values {
      possible_values {
        categorical: "SPARSE_OBLIQUE"
      }
    }
  }
  children {
    name: "sparse_oblique_normalization"
    discrete_candidates {
      possible_values {
        categorical: "NONE"
      }
      possible_values {
        categorical: "STANDARD_DEVIATION"
      }
      possible_values {
        categorical: "MIN_MAX"
      }
    }
    parent_discrete_values {
      possible_values {
        categorical: "SPARSE_OBLIQUE"
      }
    }
  }
  children {
    name: "sparse_oblique_weights"
    discrete_candidates {
      possible_values {
        categorical: "BINARY"
      }
      possible_values {
        categorical: "CONTINUOUS"
      }
    }
    parent_discrete_values {
      possible_values {
        categorical: "SPARSE_OBLIQUE"
      }
    }
  }
}
fields {
  name: "categorical_algorithm"
  discrete_candidates {
    possible_values {
      categorical: "CART"
    }
    possible_values {
      categorical: "RANDOM"
    }
  }
}
fields {
  name: "growing_strategy"
  discrete_candidates {
    possible_values {
      categorical: "LOCAL"
    }
    possible_values {
      categorical: "BEST_FIRST_GLOBAL"
    }
  }
  children {
    name: "max_num_nodes"
    discrete_candidates {
      possible_values {
        integer: 16
      }
      possible_values {
        integer: 32
      }
      possible_values {
        integer: 64
      }
      possible_values {
        integer: 128
      }
      possible_values {
        integer: 256
      }
      possible_values {
        integer: 512
      }
    }
    parent_discrete_values {
      possible_values {
        categorical: "BEST_FIRST_GLOBAL"
      }
    }
  }
  children {
    name: "max_depth"
    discrete_candidates {
      possible_values {
        integer: 3
      }
      possible_values {
        integer: 4
      }
      possible_values {
        integer: 6
      }
      possible_values {
        integer: 8
      }
    }
    parent_discrete_values {
      possible_values {
        categorical: "LOCAL"
      }
    }
  }
}
fields {
  name: "sampling_method"
  discrete_candidates {
    possible_values {
      categorical: "RANDOM"
    }
  }
  children {
    name: "subsample"
    discrete_candidates {
      possible_values {
        real: 0.6
      }
      possible_values {
        real: 0.8
      }
      possible_values {
        real: 0.9
      }
      possible_values {
        real: 1
      }
    }
    parent_discrete_values {
      possible_values {
        categorical: "RANDOM"
      }
    }
  }
}
fields {
  name: "shrinkage"
  discrete_candidates {
    possible_values {
      real: 0.02
    }
    possible_values {
      real: 0.05
    }
    possible_values {
      real: 0.1
    }
  }
}
fields {
  name: "min_examples"
  discrete_candidates {
    possible_values {
      integer: 5
    }
    possible_values {
      integer: 7
    }
    possible_values {
      integer: 10
    }
    possible_values {
      integer: 20
    }
  }
}
fields {
  name: "use_hessian_gain"
  discrete_candidates {
    possible_values {
      categorical: "true"
    }
    possible_values {
      categorical: "false"
    }
  }
}
fields {
  name: "num_candidate_attributes_ratio"
  discrete_candidates {
    possible_values {
      real: 0.2
    }
    possible_values {
      real: 0.5
    }
    possible_values {
      real: 0.9
    }
    possible_values {
      real: 1
    }
  }
}

[INFO 23-08-16 11:08:26.3046 UTC hyperparameters_optimizer.cc:500] Start local tuner with 32 thread(s)
[INFO[INFO 23-08-16 11:08:26.3062 UTC  23-08-16 11:08:26.3062 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
gradient_boosted_trees.cc:[INFO 23-08-16 11:08:26.3062 UTC gradient_boosted_trees.cc459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).[INFO[INFO 23-08-16 11:08:26.3063 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:26.3063 UTC gradient_boosted_trees.cc:1085] 
[INFO 23-08-16 11:08:26.3063 UTC gradient_boosted_trees.cc:459 23-08-16 11:08:26.3063 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
Training gradient boosted tree on 22792 example(s) and 14 feature(s).
] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:26.3064 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:26.3065 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:26.3065 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:26.3065 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:26.3066 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:26.3066 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:26.3067 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:26.3067 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:26.3068 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO[INFO 23-08-16 11:08:26.3070 UTC  23-08-16 11:08:26.3069 UTC gradient_boosted_trees.cc:459gradient_boosted_trees.cc:459] ] Default loss set to BINOMIAL_LOG_LIKELIHOOD
Default loss set to [INFOBINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:26.3070 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and  23-08-16 11:08:26.3070 UTC gradient_boosted_trees.cc:108514 feature(s).
] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[[INFOINFO 23-08-16 11:08:26.3072 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
 23-08-16 11:08:26.3072 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD[INFO 23-08-16 11:08:26.3072 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 
14[INFO 23-08-16 11:08:26.3073 UTC gradient_boosted_trees.cc: feature(s).
1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:26.3074 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:26.3074 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:26.3075 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:26.3076 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:26.3077 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:26.3077 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:26.3082 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:26.3082 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792[INFO example(s) and 14 feature(s).
 23-08-16 11:08:26.3082 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:26.3083 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:26.3090 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:26.3090 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:26.3091 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:26.3091 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO[ 23-08-16 11:08:26.3099 UTC gradient_boosted_trees.cc:459INFO 23-08-16 11:08:26.3099 UTC gradient_boosted_trees.cc:] Default loss set to BINOMIAL_LOG_LIKELIHOOD
459] Default loss set to [INFO 23-08-16 11:08:26.3099 UTC gradient_boosted_trees.cc:1085BINOMIAL_LOG_LIKELIHOOD
] [Training gradient boosted tree on 22792 example(s) and 14 feature(s).
INFO 23-08-16 11:08:26.3100 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO[INFO 23-08-16 11:08:26.3102 UTC gradient_boosted_trees.cc 23-08-16 11:08:26.3102 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:26.3102 UTC gradient_boosted_trees.cc:1085:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
] Training gradient boosted tree on 22792 example(s) and 14 feature(s).[INFO[ 23-08-16 11:08:26.3103 UTC INFOgradient_boosted_trees.cc:459]  23-08-16 11:08:26.3103 UTC [INFOgradient_boosted_trees.ccDefault loss set to BINOMIAL_LOG_LIKELIHOOD
:[INFO459 23-08-16 11:08:26.3104 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).

] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:26.3105 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 23-08-16 11:08:26.3104 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
 feature(s).
[INFO 23-08-16 11:08:26.3107 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:26.3107 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:26.3109 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:26.3109 UTC gradient_boosted_trees.cc[INFO:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[ 23-08-16 11:08:26.3110 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
INFO 23-08-16 11:08:26.3110 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:26.3116 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:26.3116 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:26.3117 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:26.3118 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:26.3123 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:26.3124 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:26.3125 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:26.3125 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:26.3150 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:26.3160 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO[INFO 23-08-16 11:08:26.3404 UTC gradient_boosted_trees.cc: 23-08-16 11:08:26.3404 UTC 1128] 20533 examples used for training and 2259 examples used for validation
gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:26.3589 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:26.3593 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:26.3597 UTC gradient_boosted_trees.cc:[INFO1128] 20533 examples used for training and 2259 examples used for validation
 23-08-16 11:08:26.3597 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:26.3607 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:26.3614 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:26.3617 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:26.3618 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:26.3628 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:26.3629 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation[INFO
 23-08-16 11:08:26.3629 UTC gradient_boosted_trees.cc[[INFOINFO:1128]  23-08-16 11:08:26.3630 UTC gradient_boosted_trees.cc20533 examples used for training and 2259 examples used for validation
:1128] 20533 examples used for training and 2259 examples used for validation 23-08-16 11:08:26.3630 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation

[INFO[ 23-08-16 11:08:26.3631 UTC gradient_boosted_trees.ccINFO[INFO: 23-08-16 11:08:26.3632 UTC gradient_boosted_trees.cc:11281128] 20533 examples used for training and 2259 examples used for validation
 23-08-16 11:08:26.3632 UTC gradient_boosted_trees.cc:] 20533 examples used for training and 2259 examples used for validation
1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:26.3633 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:26.3640 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:26.3644 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:26.3653 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:26.3659 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation[INFO 23-08-16 11:08:26.3660 UTC gradient_boosted_trees.cc:1128] 
20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:26.3685 UTC gradient_boosted_trees.cc:1128] 20533[INFO examples used for training and 2259 examples used for validation 23-08-16 11:08:26.3685 UTC gradient_boosted_trees.cc:1128
] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:26.3805 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259[[INFO examples used for validationINFO 23-08-16 11:08:26.3805 UTC gradient_boosted_trees.cc
 23-08-16 11:08:26.3805 UTC gradient_boosted_trees.cc::1128] 205331128] 20533 examples used for training and 2259 examples used for validation
 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:26.3807 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:08:26.4823 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.060520 train-accuracy:0.761895 valid-loss:1.117708 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.5109 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.034401 train-accuracy:0.761895 valid-loss:1.090277 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.5224 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.082692 train-accuracy:0.761895 valid-loss:1.140741 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.5375 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.024398 train-accuracy:0.761895 valid-loss:1.080875 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.5471 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.080233 train-accuracy:0.761895 valid-loss:1.138164 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.5489 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.060070 train-accuracy:0.761895 valid-loss:1.117365 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.5523 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.016328 train-accuracy:0.761895 valid-loss:1.070658 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.5628 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.085297 train-accuracy:0.761895 valid-loss:1.143266 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.6032 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.053581 train-accuracy:0.761895 valid-loss:1.110675 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.6160 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.009800 train-accuracy:0.761895 valid-loss:1.063156 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.6367 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.053989 train-accuracy:0.761895 valid-loss:1.111597 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.6621 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.079152 train-accuracy:0.761895 valid-loss:1.137115 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.6675 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.080746 train-accuracy:0.761895 valid-loss:1.138830 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.6724 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.016576 train-accuracy:0.761895 valid-loss:1.072904 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.6797 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.017781 train-accuracy:0.761895 valid-loss:1.072645 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.6858 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.079625 train-accuracy:0.761895 valid-loss:1.137371 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.7092 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.014103 train-accuracy:0.761895 valid-loss:1.069569 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.7182 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.019006 train-accuracy:0.761895 valid-loss:1.073190 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.7315 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.079718 train-accuracy:0.761895 valid-loss:1.137516 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.7553 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.052418 train-accuracy:0.761895 valid-loss:1.109157 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.7691 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.050215 train-accuracy:0.761895 valid-loss:1.106337 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.7820 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.052939 train-accuracy:0.761895 valid-loss:1.109668 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.7999 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.080744 train-accuracy:0.761895 valid-loss:1.138851 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.8126 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.017080 train-accuracy:0.761895 valid-loss:1.072045 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.8227 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.080979 train-accuracy:0.761895 valid-loss:1.138389 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.8270 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.078470 train-accuracy:0.761895 valid-loss:1.135989 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.8476 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.079121 train-accuracy:0.761895 valid-loss:1.136935 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.8502 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.011469 train-accuracy:0.761895 valid-loss:1.065462 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.8557 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.054467 train-accuracy:0.761895 valid-loss:1.111421 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.8624 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.007886 train-accuracy:0.761895 valid-loss:1.061560 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.8796 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.079504 train-accuracy:0.761895 valid-loss:1.137702 valid-accuracy:0.736609
[INFO 23-08-16 11:08:26.9287 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.052843 train-accuracy:0.761895 valid-loss:1.111456 valid-accuracy:0.736609
[INFO 23-08-16 11:08:27.5955 UTC gradient_boosted_trees.cc:1544] 	num-trees:3 train-loss:0.978275 train-accuracy:0.761895 valid-loss:1.030907 valid-accuracy:0.736609
[INFO 23-08-16 11:08:57.6001 UTC gradient_boosted_trees.cc:1544] 	num-trees:71 train-loss:0.645856 train-accuracy:0.864511 valid-loss:0.712521 valid-accuracy:0.838424
[INFO 23-08-16 11:08:59.8972 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.621505
[INFO 23-08-16 11:08:59.8972 UTC gradient_boosted_trees.cc:247] Truncates the model to 72 tree(s) i.e. 72  iteration(s).
[INFO 23-08-16 11:08:59.8981 UTC gradient_boosted_trees.cc:310] Final model num-trees:72 valid-loss:0.621505 valid-accuracy:0.858344
[INFO 23-08-16 11:08:59.9002 UTC hyperparameters_optimizer.cc:582] [1/50] Score: -0.621505 / -0.621505 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 5 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 32 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.6 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:08:59.9008 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:08:59.9009 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:08:59.9064 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:09:00.2983 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.082344 train-accuracy:0.761895 valid-loss:1.140383 valid-accuracy:0.736609
[INFO 23-08-16 11:09:00.5775 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.587795
[INFO 23-08-16 11:09:00.5775 UTC gradient_boosted_trees.cc:247] Truncates the model to 150 tree(s) i.e. 150  iteration(s).
[INFO 23-08-16 11:09:00.5779 UTC gradient_boosted_trees.cc:310] Final model num-trees:150 valid-loss:0.587795 valid-accuracy:0.864099
[INFO 23-08-16 11:09:00.5802 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:09:00.5802 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:09:00.5813 UTC hyperparameters_optimizer.cc:582] [2/50] Score: -0.587795 / -0.587795 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 1 } } fields { name: "sparse_oblique_normalization" value { categorical: "MIN_MAX" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.6 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 10 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 23-08-16 11:09:00.5852 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:09:01.0792 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.056010 train-accuracy:0.761895 valid-loss:1.115039 valid-accuracy:0.736609
[INFO 23-08-16 11:09:03.1408 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.540863 train-accuracy:0.879268 valid-loss:0.593033 valid-accuracy:0.868969
[INFO 23-08-16 11:09:03.1408 UTC gradient_boosted_trees.cc:247] Truncates the model to 294 tree(s) i.e. 294  iteration(s).
[INFO 23-08-16 11:09:03.1409 UTC gradient_boosted_trees.cc:310] Final model num-trees:294 valid-loss:0.592873 valid-accuracy:0.868526
[INFO 23-08-16 11:09:03.1425 UTC hyperparameters_optimizer.cc:582] [3/50] Score: -0.592873 / -0.587795 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 2 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 4 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.6 } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "min_examples" value { integer: 20 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:09:03.1457 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:09:03.1457 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:09:03.1505 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:09:03.5161 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.080643 train-accuracy:0.761895 valid-loss:1.138458 valid-accuracy:0.736609
[INFO 23-08-16 11:09:04.0248 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.579144
[INFO 23-08-16 11:09:04.0248 UTC gradient_boosted_trees.cc:247] Truncates the model to 87 tree(s) i.e. 87  iteration(s).
[INFO 23-08-16 11:09:04.0259 UTC gradient_boosted_trees.cc:310] Final model num-trees:87 valid-loss:0.579144 valid-accuracy:0.868969
[INFO 23-08-16 11:09:04.0310 UTC hyperparameters_optimizer.cc:582] [4/50] Score: -0.579144 / -0.579144 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 1 } } fields { name: "sparse_oblique_normalization" value { categorical: "MIN_MAX" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 512 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 23-08-16 11:09:04.0316 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:09:04.0317 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:09:04.0367 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:09:04.4008 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.008621 train-accuracy:0.761895 valid-loss:1.061219 valid-accuracy:0.736609
[INFO 23-08-16 11:09:07.4914 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.604322
[INFO 23-08-16 11:09:07.4914 UTC gradient_boosted_trees.cc:247] Truncates the model to 97 tree(s) i.e. 97  iteration(s).
[INFO 23-08-16 11:09:07.4921 UTC gradient_boosted_trees.cc:310] Final model num-trees:97 valid-loss:0.604322 valid-accuracy:0.860115
[INFO 23-08-16 11:09:07.4942 UTC hyperparameters_optimizer.cc:582] [5/50] Score: -0.604322 / -0.579144 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 4 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 6 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.8 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 23-08-16 11:09:07.4955 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:09:07.4955 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:09:07.5006 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:09:07.9368 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.022495 train-accuracy:0.761895 valid-loss:1.078056 valid-accuracy:0.736609
[INFO 23-08-16 11:09:11.4269 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.558511 train-accuracy:0.874446 valid-loss:0.616054 valid-accuracy:0.861000
[INFO 23-08-16 11:09:11.4270 UTC gradient_boosted_trees.cc:247] Truncates the model to 299 tree(s) i.e. 299  iteration(s).
[INFO 23-08-16 11:09:11.4270 UTC gradient_boosted_trees.cc:310] Final model num-trees:299 valid-loss:0.616025 valid-accuracy:0.861000
[INFO 23-08-16 11:09:11.4279 UTC hyperparameters_optimizer.cc:582] [6/50] Score: -0.616025 / -0.579144 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 4 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 3 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.9 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 20 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 23-08-16 11:09:11.4297 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:09:11.4297 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:09:11.4346 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:09:11.5118 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.080831 train-accuracy:0.761895 valid-loss:1.138862 valid-accuracy:0.736609
[INFO 23-08-16 11:09:13.3635 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.588981 train-accuracy:0.865972 valid-loss:0.618730 valid-accuracy:0.857459
[INFO 23-08-16 11:09:13.3636 UTC gradient_boosted_trees.cc:247] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 23-08-16 11:09:13.3636 UTC gradient_boosted_trees.cc:310] Final model num-trees:300 valid-loss:0.618730 valid-accuracy:0.857459
[INFO 23-08-16 11:09:13.3652 UTC hyperparameters_optimizer.cc:582] [7/50] Score: -0.61873 / -0.579144 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 5 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 4 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.6 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 10 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:09:13.3679 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:09:13.3679 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:09:13.3727 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:09:13.5048 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.035720 train-accuracy:0.761895 valid-loss:1.091776 valid-accuracy:0.736609
[INFO 23-08-16 11:09:14.7979 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.594984
[INFO 23-08-16 11:09:14.7979 UTC gradient_boosted_trees.cc:247] Truncates the model to 67 tree(s) i.e. 67  iteration(s).
[INFO 23-08-16 11:09:14.7988 UTC gradient_boosted_trees.cc:310] Final model num-trees:67 valid-loss:0.594984 valid-accuracy:0.862328
[INFO 23-08-16 11:09:14.8013 UTC hyperparameters_optimizer.cc:582] [8/50] Score: -0.594984 / -0.579144 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 4 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 256 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 20 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 23-08-16 11:09:14.8046 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:09:14.8046 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:09:14.8094 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:09:14.8846 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.601315
[INFO 23-08-16 11:09:14.8847 UTC gradient_boosted_trees.cc:247] Truncates the model to 240 tree(s) i.e. 240  iteration(s).
[INFO 23-08-16 11:09:14.8849 UTC gradient_boosted_trees.cc:310] Final model num-trees:240 valid-loss:0.601315 valid-accuracy:0.865427
[INFO 23-08-16 11:09:14.8861 UTC hyperparameters_optimizer.cc:582] [9/50] Score: -0.601315 / -0.579144 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 3 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 4 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.8 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 7 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 23-08-16 11:09:14.8885 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:09:14.8886 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:09:14.8931 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:09:15.0170 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.033852 train-accuracy:0.761895 valid-loss:1.089140 valid-accuracy:0.736609
[INFO 23-08-16 11:09:15.2405 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.080070 train-accuracy:0.761895 valid-loss:1.138312 valid-accuracy:0.736609
[INFO 23-08-16 11:09:17.3329 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.609047
[INFO 23-08-16 11:09:17.3330 UTC gradient_boosted_trees.cc:247] Truncates the model to 151 tree(s) i.e. 151  iteration(s).
[INFO 23-08-16 11:09:17.3341 UTC gradient_boosted_trees.cc:310] Final model num-trees:151 valid-loss:0.609047 valid-accuracy:0.864542
[INFO 23-08-16 11:09:17.3392 UTC hyperparameters_optimizer.cc:582] [10/50] Score: -0.609047 / -0.579144 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 4 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 256 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.6 } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 23-08-16 11:09:17.3474 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:09:17.3474 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:09:17.3521 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:09:17.6767 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.055057 train-accuracy:0.761895 valid-loss:1.112117 valid-accuracy:0.736609
[INFO 23-08-16 11:09:18.1050 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.585247
[INFO 23-08-16 11:09:18.1051 UTC gradient_boosted_trees.cc:247] Truncates the model to 180 tree(s) i.e. 180  iteration(s).
[INFO 23-08-16 11:09:18.1061 UTC gradient_boosted_trees.cc:310] Final model num-trees:180 valid-loss:0.585247 valid-accuracy:0.865870
[INFO 23-08-16 11:09:18.1116 UTC hyperparameters_optimizer.cc:582] [11/50] Score: -0.585247 / -0.579144 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 3 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 256 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.6 } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "min_examples" value { integer: 7 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 23-08-16 11:09:18.1204 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:09:18.1205 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:09:18.1250 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:09:18.2802 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.576761
[INFO 23-08-16 11:09:18.2802 UTC gradient_boosted_trees.cc:247] Truncates the model to 104 tree(s) i.e. 104  iteration(s).
[INFO 23-08-16 11:09:18.2819 UTC gradient_boosted_trees.cc:310] Final model num-trees:104 valid-loss:0.576761 valid-accuracy:0.871182
[INFO 23-08-16 11:09:18.2890 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:09:18.2890 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:09:18.2920 UTC hyperparameters_optimizer.cc:582] [12/50] Score: -0.576761 / -0.576761 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 2 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.8 } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "min_examples" value { integer: 7 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:09:18.2944 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:09:18.4524 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.011378 train-accuracy:0.761895 valid-loss:1.065565 valid-accuracy:0.736609
[INFO 23-08-16 11:09:18.7125 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.007702 train-accuracy:0.761895 valid-loss:1.061728 valid-accuracy:0.736609
[INFO 23-08-16 11:09:19.1543 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.574235
[INFO 23-08-16 11:09:19.1543 UTC gradient_boosted_trees.cc:247] Truncates the model to 135 tree(s) i.e. 135  iteration(s).
[INFO 23-08-16 11:09:19.1551 UTC gradient_boosted_trees.cc:310] Final model num-trees:135 valid-loss:0.574235 valid-accuracy:0.868969
[INFO 23-08-16 11:09:19.1589 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:09:19.1590 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:09:19.1635 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:09:19.1649 UTC hyperparameters_optimizer.cc:582] [13/50] Score: -0.574235 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 1 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 64 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 20 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 23-08-16 11:09:19.6725 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.054670 train-accuracy:0.761895 valid-loss:1.111134 valid-accuracy:0.736609
[INFO 23-08-16 11:09:19.8336 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.616186 train-accuracy:0.859787 valid-loss:0.644742 valid-accuracy:0.851262
[INFO 23-08-16 11:09:19.8336 UTC gradient_boosted_trees.cc:247] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 23-08-16 11:09:19.8336 UTC gradient_boosted_trees.cc:310] Final model num-trees:300 valid-loss:0.644742 valid-accuracy:0.851262
[INFO 23-08-16 11:09:19.8346 UTC hyperparameters_optimizer.cc:582] [14/50] Score: -0.644742 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 5 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 3 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 10 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 23-08-16 11:09:19.8361 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:09:19.8361 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:09:19.8411 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:09:19.9495 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.575853
[INFO 23-08-16 11:09:19.9496 UTC gradient_boosted_trees.cc:247] Truncates the model to 75 tree(s) i.e. 75  iteration(s).
[INFO 23-08-16 11:09:19.9511 UTC gradient_boosted_trees.cc:310] Final model num-trees:75 valid-loss:0.575853 valid-accuracy:0.868083
[INFO 23-08-16 11:09:19.9560 UTC hyperparameters_optimizer.cc:582] [15/50] Score: -0.575853 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 3 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 23-08-16 11:09:19.9631 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:09:19.9631 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:09:19.9678 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:09:20.0111 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.034381 train-accuracy:0.761895 valid-loss:1.090479 valid-accuracy:0.736609
[INFO 23-08-16 11:09:20.1262 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.084782 train-accuracy:0.761895 valid-loss:1.143113 valid-accuracy:0.736609
[INFO 23-08-16 11:09:24.1281 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.634505
[INFO 23-08-16 11:09:24.1282 UTC gradient_boosted_trees.cc:247] Truncates the model to 91 tree(s) i.e. 91  iteration(s).
[INFO 23-08-16 11:09:24.1289 UTC gradient_boosted_trees.cc:310] Final model num-trees:91 valid-loss:0.634505 valid-accuracy:0.852147
[INFO 23-08-16 11:09:24.1312 UTC hyperparameters_optimizer.cc:582] [16/50] Score: -0.634505 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 5 } } fields { name: "sparse_oblique_normalization" value { categorical: "MIN_MAX" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 32 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 10 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 23-08-16 11:09:24.1345 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:09:24.1346 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:09:24.1391 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:09:24.4314 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.078871 train-accuracy:0.761895 valid-loss:1.137038 valid-accuracy:0.736609
[INFO 23-08-16 11:09:27.6264 UTC gradient_boosted_trees.cc:1544] 	num-trees:110 train-loss:0.590722 train-accuracy:0.866848 valid-loss:0.629717 valid-accuracy:0.856131
[INFO 23-08-16 11:09:29.2415 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.511615 train-accuracy:0.890712 valid-loss:0.592446 valid-accuracy:0.867641
[INFO 23-08-16 11:09:29.2416 UTC gradient_boosted_trees.cc:247] Truncates the model to 289 tree(s) i.e. 289  iteration(s).
[INFO 23-08-16 11:09:29.2420 UTC gradient_boosted_trees.cc:310] Final model num-trees:289 valid-loss:0.592294 valid-accuracy:0.867641
[INFO 23-08-16 11:09:29.2483 UTC hyperparameters_optimizer.cc:582] [17/50] Score: -0.592294 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 1 } } fields { name: "sparse_oblique_normalization" value { categorical: "MIN_MAX" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 32 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.6 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 20 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:09:29.2589 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:09:29.2589 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:09:29.2645 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:09:29.6504 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.059373 train-accuracy:0.761895 valid-loss:1.116517 valid-accuracy:0.736609
[INFO 23-08-16 11:09:30.1993 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.530666 train-accuracy:0.884235 valid-loss:0.586935 valid-accuracy:0.869411
[INFO 23-08-16 11:09:30.1994 UTC gradient_boosted_trees.cc:247] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 23-08-16 11:09:30.1994 UTC gradient_boosted_trees.cc:310] Final model num-trees:300 valid-loss:0.586935 valid-accuracy:0.869411
[INFO 23-08-16 11:09:30.2058 UTC hyperparameters_optimizer.cc:582] [18/50] Score: -0.586935 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "AXIS_ALIGNED" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 6 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.8 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 23-08-16 11:09:30.2064 UTC gradient_boosted_trees.cc:459] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 23-08-16 11:09:30.2064 UTC gradient_boosted_trees.cc:1085] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 23-08-16 11:09:30.2130 UTC gradient_boosted_trees.cc:1128] 20533 examples used for training and 2259 examples used for validation
[INFO 23-08-16 11:09:30.4667 UTC gradient_boosted_trees.cc:1542] 	num-trees:1 train-loss:1.055494 train-accuracy:0.761895 valid-loss:1.112262 valid-accuracy:0.736609
[INFO 23-08-16 11:09:39.1713 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.57462
[INFO 23-08-16 11:09:39.1713 UTC gradient_boosted_trees.cc:247] Truncates the model to 68 tree(s) i.e. 68  iteration(s).
[INFO 23-08-16 11:09:39.1726 UTC gradient_boosted_trees.cc:310] Final model num-trees:68 valid-loss:0.574620 valid-accuracy:0.869411
[INFO 23-08-16 11:09:39.1758 UTC hyperparameters_optimizer.cc:582] [19/50] Score: -0.57462 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 2 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 64 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.9 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 7 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:09:42.3542 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.534859 train-accuracy:0.880047 valid-loss:0.592023 valid-accuracy:0.870297
[INFO 23-08-16 11:09:42.3542 UTC gradient_boosted_trees.cc:247] Truncates the model to 297 tree(s) i.e. 297  iteration(s).
[INFO 23-08-16 11:09:42.3543 UTC gradient_boosted_trees.cc:310] Final model num-trees:297 valid-loss:0.591875 valid-accuracy:0.871182
[INFO 23-08-16 11:09:42.3557 UTC hyperparameters_optimizer.cc:582] [20/50] Score: -0.591875 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 4 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 4 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "min_examples" value { integer: 10 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 23-08-16 11:09:45.1013 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.575868
[INFO 23-08-16 11:09:45.1013 UTC gradient_boosted_trees.cc:247] Truncates the model to 156 tree(s) i.e. 156  iteration(s).
[INFO 23-08-16 11:09:45.1024 UTC gradient_boosted_trees.cc:310] Final model num-trees:156 valid-loss:0.575868 valid-accuracy:0.870297
[INFO 23-08-16 11:09:45.1083 UTC hyperparameters_optimizer.cc:582] [21/50] Score: -0.575868 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 5 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 256 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.8 } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 23-08-16 11:09:45.5594 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.585791
[INFO 23-08-16 11:09:45.5594 UTC gradient_boosted_trees.cc:247] Truncates the model to 158 tree(s) i.e. 158  iteration(s).
[INFO 23-08-16 11:09:45.5602 UTC gradient_boosted_trees.cc:310] Final model num-trees:158 valid-loss:0.585791 valid-accuracy:0.869854
[INFO 23-08-16 11:09:45.5651 UTC hyperparameters_optimizer.cc:582] [22/50] Score: -0.585791 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 3 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 256 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.9 } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "min_examples" value { integer: 10 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 23-08-16 11:09:48.8690 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.575102
[INFO 23-08-16 11:09:48.8690 UTC gradient_boosted_trees.cc:247] Truncates the model to 182 tree(s) i.e. 182  iteration(s).
[INFO 23-08-16 11:09:48.8694 UTC gradient_boosted_trees.cc:310] Final model num-trees:182 valid-loss:0.575102 valid-accuracy:0.870739
[INFO 23-08-16 11:09:48.8715 UTC hyperparameters_optimizer.cc:582] [23/50] Score: -0.575102 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 2 } } fields { name: "sparse_oblique_normalization" value { categorical: "MIN_MAX" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 23-08-16 11:09:49.2709 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.522460 train-accuracy:0.884040 valid-loss:0.588174 valid-accuracy:0.871625
[INFO 23-08-16 11:09:49.2709 UTC gradient_boosted_trees.cc:247] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 23-08-16 11:09:49.2709 UTC gradient_boosted_trees.cc:310] Final model num-trees:300 valid-loss:0.588174 valid-accuracy:0.871625
[INFO 23-08-16 11:09:49.2758 UTC hyperparameters_optimizer.cc:582] [24/50] Score: -0.588174 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 1 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 6 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.9 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 7 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:09:52.4145 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.549486 train-accuracy:0.876881 valid-loss:0.608020 valid-accuracy:0.867198
[INFO 23-08-16 11:09:52.4145 UTC gradient_boosted_trees.cc:247] Truncates the model to 296 tree(s) i.e. 296  iteration(s).
[INFO 23-08-16 11:09:52.4146 UTC gradient_boosted_trees.cc:310] Final model num-trees:296 valid-loss:0.607491 valid-accuracy:0.867198
[INFO 23-08-16 11:09:52.4154 UTC hyperparameters_optimizer.cc:582] [25/50] Score: -0.607491 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 4 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 3 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.8 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 7 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 23-08-16 11:09:52.6914 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.547628 train-accuracy:0.878001 valid-loss:0.597969 valid-accuracy:0.867198
[INFO 23-08-16 11:09:52.6914 UTC gradient_boosted_trees.cc:247] Truncates the model to 296 tree(s) i.e. 296  iteration(s).
[INFO 23-08-16 11:09:52.6915 UTC gradient_boosted_trees.cc:310] Final model num-trees:296 valid-loss:0.597909 valid-accuracy:0.867641
[INFO 23-08-16 11:09:52.6923 UTC hyperparameters_optimizer.cc:582] [26/50] Score: -0.597909 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 3 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 3 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.8 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 7 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:09:57.1849 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.465381 train-accuracy:0.898115 valid-loss:0.597106 valid-accuracy:0.864542
[INFO 23-08-16 11:09:57.1850 UTC gradient_boosted_trees.cc:247] Truncates the model to 292 tree(s) i.e. 292  iteration(s).
[INFO 23-08-16 11:09:57.1853 UTC gradient_boosted_trees.cc:310] Final model num-trees:292 valid-loss:0.596803 valid-accuracy:0.864985
[INFO 23-08-16 11:09:57.1977 UTC hyperparameters_optimizer.cc:582] [27/50] Score: -0.596803 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 3 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.6 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 20 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 23-08-16 11:09:57.6505 UTC gradient_boosted_trees.cc:1544] 	num-trees:199 train-loss:0.489932 train-accuracy:0.891833 valid-loss:0.590156 valid-accuracy:0.865427
[INFO 23-08-16 11:10:00.7773 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.626160 train-accuracy:0.856962 valid-loss:0.657957 valid-accuracy:0.841080
[INFO 23-08-16 11:10:00.7773 UTC gradient_boosted_trees.cc:247] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 23-08-16 11:10:00.7773 UTC gradient_boosted_trees.cc:310] Final model num-trees:300 valid-loss:0.657957 valid-accuracy:0.841080
[INFO 23-08-16 11:10:00.7779 UTC hyperparameters_optimizer.cc:582] [28/50] Score: -0.657957 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 4 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 3 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 23-08-16 11:10:01.8466 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.582612
[INFO 23-08-16 11:10:01.8467 UTC gradient_boosted_trees.cc:247] Truncates the model to 119 tree(s) i.e. 119  iteration(s).
[INFO 23-08-16 11:10:01.8472 UTC gradient_boosted_trees.cc:310] Final model num-trees:119 valid-loss:0.582612 valid-accuracy:0.865870
[INFO 23-08-16 11:10:01.8493 UTC hyperparameters_optimizer.cc:582] [29/50] Score: -0.582612 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 2 } } fields { name: "sparse_oblique_normalization" value { categorical: "MIN_MAX" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 32 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.9 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 10 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 23-08-16 11:10:02.3571 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.493647 train-accuracy:0.890761 valid-loss:0.580171 valid-accuracy:0.870297
[INFO 23-08-16 11:10:02.3571 UTC gradient_boosted_trees.cc:247] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 23-08-16 11:10:02.3572 UTC gradient_boosted_trees.cc:310] Final model num-trees:300 valid-loss:0.580171 valid-accuracy:0.870297
[INFO 23-08-16 11:10:02.3632 UTC hyperparameters_optimizer.cc:582] [30/50] Score: -0.580171 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 2 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 128 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.8 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 10 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 23-08-16 11:10:05.8787 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.580436
[INFO 23-08-16 11:10:05.8788 UTC gradient_boosted_trees.cc:247] Truncates the model to 87 tree(s) i.e. 87  iteration(s).
[INFO 23-08-16 11:10:05.8794 UTC gradient_boosted_trees.cc:310] Final model num-trees:87 valid-loss:0.580436 valid-accuracy:0.861443
[INFO 23-08-16 11:10:05.8818 UTC hyperparameters_optimizer.cc:582] [31/50] Score: -0.580436 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 4 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 64 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.9 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 23-08-16 11:10:07.7309 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.552857 train-accuracy:0.875225 valid-loss:0.611411 valid-accuracy:0.861443
[INFO 23-08-16 11:10:07.7309 UTC gradient_boosted_trees.cc:247] Truncates the model to 299 tree(s) i.e. 299  iteration(s).
[INFO 23-08-16 11:10:07.7309 UTC gradient_boosted_trees.cc:310] Final model num-trees:299 valid-loss:0.611399 valid-accuracy:0.861443
[INFO 23-08-16 11:10:07.7315 UTC hyperparameters_optimizer.cc:582] [32/50] Score: -0.611399 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 4 } } fields { name: "sparse_oblique_normalization" value { categorical: "MIN_MAX" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 3 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 23-08-16 11:10:10.5852 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.593538
[INFO 23-08-16 11:10:10.5853 UTC gradient_boosted_trees.cc:247] Truncates the model to 215 tree(s) i.e. 215  iteration(s).
[INFO 23-08-16 11:10:10.5859 UTC gradient_boosted_trees.cc:310] Final model num-trees:215 valid-loss:0.593538 valid-accuracy:0.860558
[INFO 23-08-16 11:10:10.5908 UTC hyperparameters_optimizer.cc:582] [33/50] Score: -0.593538 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 4 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 512 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.9 } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 23-08-16 11:10:12.5319 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.623461
[INFO 23-08-16 11:10:12.5320 UTC gradient_boosted_trees.cc:247] Truncates the model to 126 tree(s) i.e. 126  iteration(s).
[INFO 23-08-16 11:10:12.5323 UTC gradient_boosted_trees.cc:310] Final model num-trees:126 valid-loss:0.623461 valid-accuracy:0.852147
[INFO 23-08-16 11:10:12.5342 UTC hyperparameters_optimizer.cc:582] [34/50] Score: -0.623461 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 5 } } fields { name: "sparse_oblique_normalization" value { categorical: "MIN_MAX" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 20 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:10:13.0852 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.642896
[INFO 23-08-16 11:10:13.0853 UTC gradient_boosted_trees.cc:247] Truncates the model to 143 tree(s) i.e. 143  iteration(s).
[INFO 23-08-16 11:10:13.0859 UTC gradient_boosted_trees.cc:310] Final model num-trees:143 valid-loss:0.642896 valid-accuracy:0.849048
[INFO 23-08-16 11:10:13.0893 UTC hyperparameters_optimizer.cc:582] [35/50] Score: -0.642896 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 5 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 512 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.6 } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "min_examples" value { integer: 10 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 23-08-16 11:10:13.7497 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.514136 train-accuracy:0.886719 valid-loss:0.582222 valid-accuracy:0.868969
[INFO 23-08-16 11:10:13.7498 UTC gradient_boosted_trees.cc:247] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 23-08-16 11:10:13.7498 UTC gradient_boosted_trees.cc:310] Final model num-trees:300 valid-loss:0.582222 valid-accuracy:0.868969
[INFO 23-08-16 11:10:13.7551 UTC hyperparameters_optimizer.cc:582] [36/50] Score: -0.582222 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 5 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 256 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.8 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 20 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:10:14.7675 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.625355
[INFO 23-08-16 11:10:14.7676 UTC gradient_boosted_trees.cc:247] Truncates the model to 182 tree(s) i.e. 182  iteration(s).
[INFO 23-08-16 11:10:14.7683 UTC gradient_boosted_trees.cc:310] Final model num-trees:182 valid-loss:0.625355 valid-accuracy:0.853032
[INFO 23-08-16 11:10:14.7741 UTC hyperparameters_optimizer.cc:582] [37/50] Score: -0.625355 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 5 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.9 } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "min_examples" value { integer: 20 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 23-08-16 11:10:14.9745 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.500521 train-accuracy:0.890128 valid-loss:0.587961 valid-accuracy:0.861886
[INFO 23-08-16 11:10:14.9745 UTC gradient_boosted_trees.cc:247] Truncates the model to 299 tree(s) i.e. 299  iteration(s).
[INFO 23-08-16 11:10:14.9745 UTC gradient_boosted_trees.cc:310] Final model num-trees:299 valid-loss:0.587948 valid-accuracy:0.861886
[INFO 23-08-16 11:10:14.9808 UTC hyperparameters_optimizer.cc:582] [38/50] Score: -0.587948 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 2 } } fields { name: "sparse_oblique_normalization" value { categorical: "MIN_MAX" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 256 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 23-08-16 11:10:24.0655 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.481010 train-accuracy:0.894414 valid-loss:0.628041 valid-accuracy:0.853475
[INFO 23-08-16 11:10:24.0655 UTC gradient_boosted_trees.cc:247] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 23-08-16 11:10:24.0656 UTC gradient_boosted_trees.cc:310] Final model num-trees:300 valid-loss:0.628041 valid-accuracy:0.853475
[INFO 23-08-16 11:10:24.0721 UTC hyperparameters_optimizer.cc:582] [39/50] Score: -0.628041 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 5 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 64 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.8 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 7 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:10:27.6515 UTC gradient_boosted_trees.cc:1544] 	num-trees:281 train-loss:0.528716 train-accuracy:0.881995 valid-loss:0.589776 valid-accuracy:0.867641
[INFO 23-08-16 11:10:30.0631 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.492458 train-accuracy:0.890469 valid-loss:0.577581 valid-accuracy:0.868083
[INFO 23-08-16 11:10:30.0631 UTC gradient_boosted_trees.cc:247] Truncates the model to 287 tree(s) i.e. 287  iteration(s).
[INFO 23-08-16 11:10:30.0632 UTC gradient_boosted_trees.cc:310] Final model num-trees:287 valid-loss:0.576924 valid-accuracy:0.868969
[INFO 23-08-16 11:10:30.0655 UTC hyperparameters_optimizer.cc:582] [40/50] Score: -0.576924 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 1 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.8 } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 23-08-16 11:10:32.0797 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.435926 train-accuracy:0.912775 valid-loss:0.599424 valid-accuracy:0.863656
[INFO 23-08-16 11:10:32.0797 UTC gradient_boosted_trees.cc:247] Truncates the model to 299 tree(s) i.e. 299  iteration(s).
[INFO 23-08-16 11:10:32.0798 UTC gradient_boosted_trees.cc:310] Final model num-trees:299 valid-loss:0.599401 valid-accuracy:0.863656
[INFO 23-08-16 11:10:32.0900 UTC hyperparameters_optimizer.cc:582] [41/50] Score: -0.599401 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 3 } } fields { name: "sparse_oblique_normalization" value { categorical: "MIN_MAX" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.6 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:10:32.3847 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.523727 train-accuracy:0.883456 valid-loss:0.587662 valid-accuracy:0.867198
[INFO 23-08-16 11:10:32.3848 UTC gradient_boosted_trees.cc:247] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 23-08-16 11:10:32.3848 UTC gradient_boosted_trees.cc:310] Final model num-trees:300 valid-loss:0.587662 valid-accuracy:0.867198
[INFO 23-08-16 11:10:32.3886 UTC hyperparameters_optimizer.cc:582] [42/50] Score: -0.587662 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 4 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 6 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.9 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 7 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 23-08-16 11:10:33.0908 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.448174 train-accuracy:0.901719 valid-loss:0.584032 valid-accuracy:0.870297
[INFO 23-08-16 11:10:33.0908 UTC gradient_boosted_trees.cc:247] Truncates the model to 283 tree(s) i.e. 283  iteration(s).
[INFO 23-08-16 11:10:33.0914 UTC gradient_boosted_trees.cc:310] Final model num-trees:283 valid-loss:0.583289 valid-accuracy:0.870297
[INFO 23-08-16 11:10:33.1016 UTC hyperparameters_optimizer.cc:582] [43/50] Score: -0.583289 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 2 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 23-08-16 11:10:34.3194 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.636921
[INFO 23-08-16 11:10:34.3195 UTC gradient_boosted_trees.cc:247] Truncates the model to 181 tree(s) i.e. 181  iteration(s).
[INFO 23-08-16 11:10:34.3200 UTC gradient_boosted_trees.cc:310] Final model num-trees:181 valid-loss:0.636921 valid-accuracy:0.853032
[INFO 23-08-16 11:10:34.3236 UTC hyperparameters_optimizer.cc:582] [44/50] Score: -0.636921 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 5 } } fields { name: "sparse_oblique_normalization" value { categorical: "MIN_MAX" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 64 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.9 } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "min_examples" value { integer: 20 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:10:36.1570 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.435564 train-accuracy:0.914236 valid-loss:0.600726 valid-accuracy:0.862771
[INFO 23-08-16 11:10:36.1571 UTC gradient_boosted_trees.cc:247] Truncates the model to 299 tree(s) i.e. 299  iteration(s).
[INFO 23-08-16 11:10:36.1571 UTC gradient_boosted_trees.cc:310] Final model num-trees:299 valid-loss:0.600701 valid-accuracy:0.862328
[INFO 23-08-16 11:10:36.1679 UTC hyperparameters_optimizer.cc:582] [45/50] Score: -0.600701 / -0.574235 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 4 } } fields { name: "sparse_oblique_normalization" value { categorical: "MIN_MAX" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.9 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 10 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 23-08-16 11:10:37.1114 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.456672 train-accuracy:0.898067 valid-loss:0.573701 valid-accuracy:0.867641
[INFO 23-08-16 11:10:37.1115 UTC gradient_boosted_trees.cc:247] Truncates the model to 284 tree(s) i.e. 284  iteration(s).
[INFO 23-08-16 11:10:37.1120 UTC gradient_boosted_trees.cc:310] Final model num-trees:284 valid-loss:0.573333 valid-accuracy:0.867198
[INFO 23-08-16 11:10:37.1261 UTC hyperparameters_optimizer.cc:582] [46/50] Score: -0.573333 / -0.573333 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 4 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.9 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 23-08-16 11:10:41.5204 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.562199 train-accuracy:0.873326 valid-loss:0.617909 valid-accuracy:0.855246
[INFO 23-08-16 11:10:41.5204 UTC gradient_boosted_trees.cc:247] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 23-08-16 11:10:41.5205 UTC gradient_boosted_trees.cc:310] Final model num-trees:300 valid-loss:0.617909 valid-accuracy:0.855246
[INFO 23-08-16 11:10:41.5229 UTC hyperparameters_optimizer.cc:582] [47/50] Score: -0.617909 / -0.573333 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 4 } } fields { name: "sparse_oblique_normalization" value { categorical: "MIN_MAX" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.9 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 7 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 23-08-16 11:10:50.2502 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.575538
[INFO 23-08-16 11:10:50.2503 UTC gradient_boosted_trees.cc:247] Truncates the model to 193 tree(s) i.e. 193  iteration(s).
[INFO 23-08-16 11:10:50.2507 UTC gradient_boosted_trees.cc:310] Final model num-trees:193 valid-loss:0.575538 valid-accuracy:0.866313
[INFO 23-08-16 11:10:50.2539 UTC hyperparameters_optimizer.cc:582] [48/50] Score: -0.575538 / -0.573333 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 5 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 32 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "min_examples" value { integer: 7 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:10:57.7539 UTC gradient_boosted_trees.cc:1544] 	num-trees:275 train-loss:0.494402 train-accuracy:0.890907 valid-loss:0.583064 valid-accuracy:0.868083
[INFO 23-08-16 11:11:00.3725 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.490348 train-accuracy:0.894998 valid-loss:0.577486 valid-accuracy:0.872510
[INFO 23-08-16 11:11:00.3726 UTC gradient_boosted_trees.cc:247] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 23-08-16 11:11:00.3726 UTC gradient_boosted_trees.cc:310] Final model num-trees:300 valid-loss:0.577486 valid-accuracy:0.872510
[INFO 23-08-16 11:11:00.3779 UTC hyperparameters_optimizer.cc:582] [49/50] Score: -0.577486 / -0.573333 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 5 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 256 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.8 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 20 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:11:04.5224 UTC gradient_boosted_trees.cc:1542] 	num-trees:300 train-loss:0.487159 train-accuracy:0.892320 valid-loss:0.581956 valid-accuracy:0.868083
[INFO 23-08-16 11:11:04.5224 UTC gradient_boosted_trees.cc:247] Truncates the model to 299 tree(s) i.e. 299  iteration(s).
[INFO 23-08-16 11:11:04.5225 UTC gradient_boosted_trees.cc:310] Final model num-trees:299 valid-loss:0.581786 valid-accuracy:0.868083
[INFO 23-08-16 11:11:04.5248 UTC hyperparameters_optimizer.cc:582] [50/50] Score: -0.581786 / -0.573333 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 3 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "min_examples" value { integer: 10 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 23-08-16 11:11:04.5502 UTC hyperparameters_optimizer.cc:219] Best hyperparameters:
fields {
  name: "split_axis"
  value {
    categorical: "SPARSE_OBLIQUE"
  }
}
fields {
  name: "sparse_oblique_projection_density_factor"
  value {
    real: 4
  }
}
fields {
  name: "sparse_oblique_normalization"
  value {
    categorical: "NONE"
  }
}
fields {
  name: "sparse_oblique_weights"
  value {
    categorical: "CONTINUOUS"
  }
}
fields {
  name: "categorical_algorithm"
  value {
    categorical: "CART"
  }
}
fields {
  name: "growing_strategy"
  value {
    categorical: "LOCAL"
  }
}
fields {
  name: "max_depth"
  value {
    integer: 8
  }
}
fields {
  name: "sampling_method"
  value {
    categorical: "RANDOM"
  }
}
fields {
  name: "subsample"
  value {
    real: 0.9
  }
}
fields {
  name: "shrinkage"
  value {
    real: 0.02
  }
}
fields {
  name: "min_examples"
  value {
    integer: 5
  }
}
fields {
  name: "use_hessian_gain"
  value {
    categorical: "true"
  }
}
fields {
  name: "num_candidate_attributes_ratio"
  value {
    real: 0.2
  }
}

[INFO 23-08-16 11:11:04.5509 UTC kernel.cc:926] Export model in log directory: /tmpfs/tmp/tmpfhjg70bi with prefix 2362b151e27349f1
[INFO 23-08-16 11:11:04.5900 UTC kernel.cc:944] Save model in resources
[INFO 23-08-16 11:11:04.5945 UTC abstract_model.cc:849] Model self evaluation:
Task: CLASSIFICATION
Label: __LABEL
Loss (BINOMIAL_LOG_LIKELIHOOD): 0.573333

Accuracy: 0.867198  CI95[W][0 1]
ErrorRate: : 0.132802


Confusion Table:
truth\prediction
   0     1    2
0  0     0    0
1  0  1578   86
2  0   214  381
Total: 2259

One vs other classes:

[INFO 23-08-16 11:11:04.6200 UTC kernel.cc:1243] Loading model from path /tmpfs/tmp/tmpfhjg70bi/model/ with prefix 2362b151e27349f1
[INFO 23-08-16 11:11:04.7821 UTC decision_forest.cc:660] Model loaded with 284 root(s), 48262 node(s), and 14 input feature(s).
[INFO 23-08-16 11:11:04.7822 UTC abstract_model.cc:1311] Engine "GradientBoostedTreesGeneric" built
[INFO 23-08-16 11:11:04.7822 UTC kernel.cc:1075] Use fast generic engine


Model trained in 0:02:38.504656
Compiling model...
Model compiled.
CPU times: user 57min 43s, sys: 1.03 s, total: 57min 44s
Wall time: 2min 39s





<keras.src.callbacks.History at 0x7f240c3141c0>
python 复制代码
# 评估模型
tuned_model.compile(["accuracy"])  # 编译模型,使用"accuracy"作为评估指标

# 使用测试数据集评估调整后的模型
tuned_test_accuracy = tuned_model.evaluate(test_ds, return_dict=True, verbose=0)["accuracy"]

# 打印使用TF-DF超参数调整器得到的测试准确率
print(f"Test accuracy with the TF-DF hyper-parameter tuner: {tuned_test_accuracy:.4f}")
Test accuracy with the TF-DF hyper-parameter tuner: 0.8741

同之前一样,显示调优日志。

python 复制代码
# 显示调优日志。
# 调用tuned_model对象的make_inspector()方法,返回一个Inspector对象,然后调用其tuning_logs()方法,返回调优日志。
tuning_logs = tuned_model.make_inspector().tuning_logs()
# 调用tuning_logs对象的head()方法,显示调优日志的前几行。
tuning_logs.head()

| | score | evaluation_time | best | split_axis | sparse_oblique_projection_density_factor | sparse_oblique_normalization | sparse_oblique_weights | categorical_algorithm | growing_strategy | max_num_nodes | sampling_method | subsample | shrinkage | min_examples | use_hessian_gain | num_candidate_attributes_ratio | max_depth |
| 0 | -0.621505 | 33.595553 | False | SPARSE_OBLIQUE | 5.0 | STANDARD_DEVIATION | CONTINUOUS | RANDOM | BEST_FIRST_GLOBAL | 32.0 | RANDOM | 0.6 | 0.10 | 5 | true | 1.0 | NaN |
| 1 | -0.587795 | 34.275111 | False | SPARSE_OBLIQUE | 1.0 | MIN_MAX | BINARY | CART | BEST_FIRST_GLOBAL | 16.0 | RANDOM | 0.6 | 0.10 | 10 | true | 0.2 | NaN |
| 2 | -0.592873 | 36.837887 | False | SPARSE_OBLIQUE | 2.0 | NONE | BINARY | RANDOM | LOCAL | NaN | RANDOM | 0.6 | 0.05 | 20 | false | 1.0 | 4.0 |
| 3 | -0.579144 | 37.724828 | False | SPARSE_OBLIQUE | 1.0 | MIN_MAX | CONTINUOUS | CART | BEST_FIRST_GLOBAL | 512.0 | RANDOM | 1.0 | 0.10 | 5 | false | 0.5 | NaN |

4 -0.604322 41.189555 False SPARSE_OBLIQUE 4.0 STANDARD_DEVIATION CONTINUOUS CART LOCAL NaN RANDOM 0.8 0.10 5 false 0.5 6.0

同之前一样,显示最佳超参数。

python 复制代码
# 从tuning_logs中选择最佳的超参数
tuning_logs[tuning_logs.best].iloc[0]
score                                            -0.573333
evaluation_time                                 130.817537
best                                                  True
split_axis                                  SPARSE_OBLIQUE
sparse_oblique_projection_density_factor               4.0
sparse_oblique_normalization                          NONE
sparse_oblique_weights                          CONTINUOUS
categorical_algorithm                                 CART
growing_strategy                                     LOCAL
max_num_nodes                                          NaN
sampling_method                                     RANDOM
subsample                                              0.9
shrinkage                                             0.02
min_examples                                             5
use_hessian_gain                                      true
num_candidate_attributes_ratio                         0.2
max_depth                                              8.0
Name: 45, dtype: object

最后,绘制模型在调整过程中的质量演变情况:

python 复制代码
# 设置图形的大小为10x5
plt.figure(figsize=(10, 5))

# 绘制当前试验的得分曲线
plt.plot(tuning_logs["score"], label="current trial")

# 绘制历史最佳试验的得分曲线
plt.plot(tuning_logs["score"].cummax(), label="best trial")

# 设置x轴标签为"调参步骤"
plt.xlabel("Tuning step")

# 设置y轴标签为"调参得分"
plt.ylabel("Tuning score")

# 添加图例
plt.legend()

# 显示图形
plt.show()

使用Keras Tuner训练模型 (替代方法)

TensorFlow Decision Forests基于Keras框架,与Keras tuner兼容。

目前,TF-DF TunerKeras Tuner是互补的。

TF-DF Tuner

  • 自动配置目标。
  • 自动提取验证数据集(如果需要)。
  • 支持模型自我评估(例如,out-of-bag评估)。
  • 分布式超参数调整。
  • 试验之间共享数据集访问:TensorFlow数据集只读取一次,在小数据集上显著加速调整。

Keras Tuner

  • 支持调整预处理参数。
  • 支持超带优化器。
  • 支持自定义目标。

让我们使用Keras tuner来调整TF-DF模型。

python 复制代码
# 安装Keras调参器
!pip install keras-tuner -U -qq

# 导入Keras调参器
import keras_tuner as kt
python 复制代码
%%time

# 定义一个构建模型的函数,接受一个hp参数
def build_model(hp):
  """创建一个模型。"""

  # 使用tfdf.keras.GradientBoostedTreesModel创建一个梯度提升树模型
  # 设置模型的各种参数,如最小样本数、分类算法、最大深度、是否使用hessian增益、学习率等
  model = tfdf.keras.GradientBoostedTreesModel(
      min_examples=hp.Choice("min_examples", [2, 5, 7, 10]),
      categorical_algorithm=hp.Choice("categorical_algorithm", ["CART", "RANDOM"]),
      max_depth=hp.Choice("max_depth", [4, 5, 6, 7]),
      # The keras tuner convert automaticall boolean parameters to integers.
      use_hessian_gain=bool(hp.Choice("use_hessian_gain", [True, False])),
      shrinkage=hp.Choice("shrinkage", [0.02, 0.05, 0.10, 0.15]),
      num_candidate_attributes_ratio=hp.Choice("num_candidate_attributes_ratio", [0.2, 0.5, 0.9, 1.0]),
  )

  # 编译模型,设置评估指标为准确率
  model.compile(metrics=["accuracy"])
  return model

# 创建一个随机搜索对象,传入构建模型的函数、优化目标、最大尝试次数、保存路径等参数
keras_tuner = kt.RandomSearch(
    build_model,
    objective="val_accuracy",
    max_trials=50,
    overwrite=True,
    directory="/tmp/keras_tuning")

# 重要提示:调参不应该在测试数据集上进行。

# 从训练数据集中提取一个验证数据集,新的训练数据集称为"子训练数据集"。

# 定义一个函数,用于将panda dataframe分割成两部分
def split_dataset(dataset, test_ratio=0.30):
  """将panda dataframe分割成两部分。"""
  # 随机选择一部分数据作为测试数据集
  test_indices = np.random.rand(len(dataset)) < test_ratio
  # 返回分割后的训练数据集和测试数据集
  return dataset[~test_indices], dataset[test_indices]

# 将训练数据集分割成子训练数据集和子验证数据集
sub_train_df, sub_valid_df = split_dataset(train_df)
# 将子训练数据集转换为tf数据集,设置标签为"income"
sub_train_ds = tfdf.keras.pd_dataframe_to_tf_dataset(sub_train_df, label="income")
# 将子验证数据集转换为tf数据集,设置标签为"income"
sub_valid_ds = tfdf.keras.pd_dataframe_to_tf_dataset(sub_valid_df, label="income")

# 开始调参
keras_tuner.search(sub_train_ds, validation_data=sub_valid_ds)
Trial 50 Complete [00h 00m 09s]
val_accuracy: 0.8768961429595947

Best val_accuracy So Far: 0.8815636038780212
Total elapsed time: 00h 03m 58s
INFO:tensorflow:Oracle triggered exit


INFO:tensorflow:Oracle triggered exit


CPU times: user 6min 39s, sys: 1min 8s, total: 7min 47s
Wall time: 3min 57s

最佳超参数可以通过get_best_hyperparameters获得:

python 复制代码
# 获取最佳超参数
best_hyper_parameters = keras_tuner.get_best_hyperparameters()[0].values

# 打印最佳超参数
print("最佳超参数:", keras_tuner.get_best_hyperparameters()[0].values)
Best hyper-parameters: {'min_examples': 10, 'categorical_algorithm': 'CART', 'max_depth': 6, 'use_hessian_gain': 1, 'shrinkage': 0.1, 'num_candidate_attributes_ratio': 0.9}

模型应该使用最佳超参数进行重新训练:

python 复制代码
# 训练模型

# 在训练模型之前,我们需要设置单元格的高度为300,以便在显示模型训练过程中的输出时,能够完整显示所有内容。

%set_cell_height 300

# 训练模型
# Keras Tuner会自动将布尔参数转换为整数。
# 在这里,我们将best_hyper_parameters字典中的"use_hessian_gain"参数的值转换为布尔类型。
best_hyper_parameters["use_hessian_gain"] = bool(best_hyper_parameters["use_hessian_gain"])

# 创建一个GradientBoostedTreesModel对象,使用best_hyper_parameters中的参数
best_model = tfdf.keras.GradientBoostedTreesModel(**best_hyper_parameters)

# 使用训练数据集train_ds来训练模型
# verbose=2表示输出详细的训练过程信息
best_model.fit(train_ds, verbose=2)
<IPython.core.display.Javascript object>


Warning: The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.


WARNING:absl:The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.


Use /tmpfs/tmp/tmpewzhl309 as temporary training directory
Reading training dataset...
Training tensor examples:
Features: {'age': <tf.Tensor 'data:0' shape=(None,) dtype=int64>, 'workclass': <tf.Tensor 'data_1:0' shape=(None,) dtype=string>, 'fnlwgt': <tf.Tensor 'data_2:0' shape=(None,) dtype=int64>, 'education': <tf.Tensor 'data_3:0' shape=(None,) dtype=string>, 'education_num': <tf.Tensor 'data_4:0' shape=(None,) dtype=int64>, 'marital_status': <tf.Tensor 'data_5:0' shape=(None,) dtype=string>, 'occupation': <tf.Tensor 'data_6:0' shape=(None,) dtype=string>, 'relationship': <tf.Tensor 'data_7:0' shape=(None,) dtype=string>, 'race': <tf.Tensor 'data_8:0' shape=(None,) dtype=string>, 'sex': <tf.Tensor 'data_9:0' shape=(None,) dtype=string>, 'capital_gain': <tf.Tensor 'data_10:0' shape=(None,) dtype=int64>, 'capital_loss': <tf.Tensor 'data_11:0' shape=(None,) dtype=int64>, 'hours_per_week': <tf.Tensor 'data_12:0' shape=(None,) dtype=int64>, 'native_country': <tf.Tensor 'data_13:0' shape=(None,) dtype=string>}
Label: Tensor("data_14:0", shape=(None,), dtype=int64)
Weights: None
Normalized tensor features:
 {'age': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast:0' shape=(None,) dtype=float32>), 'workclass': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_1:0' shape=(None,) dtype=string>), 'fnlwgt': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_1:0' shape=(None,) dtype=float32>), 'education': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_3:0' shape=(None,) dtype=string>), 'education_num': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_2:0' shape=(None,) dtype=float32>), 'marital_status': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_5:0' shape=(None,) dtype=string>), 'occupation': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_6:0' shape=(None,) dtype=string>), 'relationship': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_7:0' shape=(None,) dtype=string>), 'race': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_8:0' shape=(None,) dtype=string>), 'sex': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_9:0' shape=(None,) dtype=string>), 'capital_gain': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_3:0' shape=(None,) dtype=float32>), 'capital_loss': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_4:0' shape=(None,) dtype=float32>), 'hours_per_week': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_5:0' shape=(None,) dtype=float32>), 'native_country': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_13:0' shape=(None,) dtype=string>)}


[WARNING 23-08-16 11:15:06.4338 UTC gradient_boosted_trees.cc:1818] "goss_alpha" set but "sampling_method" not equal to "GOSS".
[WARNING 23-08-16 11:15:06.4338 UTC gradient_boosted_trees.cc:1829] "goss_beta" set but "sampling_method" not equal to "GOSS".
[WARNING 23-08-16 11:15:06.4338 UTC gradient_boosted_trees.cc:1843] "selective_gradient_boosting_ratio" set but "sampling_method" not equal to "SELGB".


Training dataset read in 0:00:00.389690. Found 22792 examples.
Training model...


[INFO 23-08-16 11:15:06.8353 UTC kernel.cc:773] Start Yggdrasil model training
[INFO 23-08-16 11:15:06.8353 UTC kernel.cc:774] Collect training examples
[INFO 23-08-16 11:15:06.8354 UTC kernel.cc:787] Dataspec guide:
column_guides {
  column_name_pattern: "^__LABEL$"
  type: CATEGORICAL
  categorial {
    min_vocab_frequency: 0
    max_vocab_count: -1
  }
}
default_column_guide {
  categorial {
    max_vocab_count: 2000
  }
  discretized_numerical {
    maximum_num_bins: 255
  }
}
ignore_columns_without_guides: false
detect_numerical_as_discretized_numerical: false

[INFO 23-08-16 11:15:06.8355 UTC kernel.cc:393] Number of batches: 23
[INFO 23-08-16 11:15:06.8355 UTC kernel.cc:394] Number of examples: 22792
[INFO 23-08-16 11:15:06.8429 UTC data_spec_inference.cc:305] 1 item(s) have been pruned (i.e. they are considered out of dictionary) for the column native_country (40 item(s) left) because min_value_count=5 and max_number_of_unique_values=2000
[INFO 23-08-16 11:15:06.8429 UTC data_spec_inference.cc:305] 1 item(s) have been pruned (i.e. they are considered out of dictionary) for the column occupation (13 item(s) left) because min_value_count=5 and max_number_of_unique_values=2000
[INFO 23-08-16 11:15:06.8430 UTC data_spec_inference.cc:305] 1 item(s) have been pruned (i.e. they are considered out of dictionary) for the column workclass (7 item(s) left) because min_value_count=5 and max_number_of_unique_values=2000
[INFO 23-08-16 11:15:06.8491 UTC kernel.cc:794] Training dataset:
Number of records: 22792
Number of columns: 15

Number of columns by type:
	CATEGORICAL: 9 (60%)
	NUMERICAL: 6 (40%)

Columns:

CATEGORICAL: 9 (60%)
	0: "__LABEL" CATEGORICAL integerized vocab-size:3 no-ood-item
	4: "education" CATEGORICAL has-dict vocab-size:17 zero-ood-items most-frequent:"HS-grad" 7340 (32.2043%)
	8: "marital_status" CATEGORICAL has-dict vocab-size:8 zero-ood-items most-frequent:"Married-civ-spouse" 10431 (45.7661%)
	9: "native_country" CATEGORICAL num-nas:407 (1.78571%) has-dict vocab-size:41 num-oods:1 (0.00446728%) most-frequent:"United-States" 20436 (91.2933%)
	10: "occupation" CATEGORICAL num-nas:1260 (5.52826%) has-dict vocab-size:14 num-oods:1 (0.00464425%) most-frequent:"Prof-specialty" 2870 (13.329%)
	11: "race" CATEGORICAL has-dict vocab-size:6 zero-ood-items most-frequent:"White" 19467 (85.4115%)
	12: "relationship" CATEGORICAL has-dict vocab-size:7 zero-ood-items most-frequent:"Husband" 9191 (40.3256%)
	13: "sex" CATEGORICAL has-dict vocab-size:3 zero-ood-items most-frequent:"Male" 15165 (66.5365%)
	14: "workclass" CATEGORICAL num-nas:1257 (5.51509%) has-dict vocab-size:8 num-oods:1 (0.0046436%) most-frequent:"Private" 15879 (73.7358%)

NUMERICAL: 6 (40%)
	1: "age" NUMERICAL mean:38.6153 min:17 max:90 sd:13.661
	2: "capital_gain" NUMERICAL mean:1081.9 min:0 max:99999 sd:7509.48
	3: "capital_loss" NUMERICAL mean:87.2806 min:0 max:4356 sd:403.01
	5: "education_num" NUMERICAL mean:10.0927 min:1 max:16 sd:2.56427
	6: "fnlwgt" NUMERICAL mean:189879 min:12285 max:1.4847e+06 sd:106423
	7: "hours_per_week" NUMERICAL mean:40.3955 min:1 max:99 sd:12.249

Terminology:
	nas: Number of non-available (i.e. missing) values.
	ood: Out of dictionary.
	manually-defined: Attribute which type is manually defined by the user i.e. the type was not automatically inferred.
	tokenized: The attribute value is obtained through tokenization.
	has-dict: The attribute is attached to a string dictionary e.g. a categorical attribute stored as a string.
	vocab-size: Number of unique values.

[INFO 23-08-16 11:15:06.8492 UTC kernel.cc:810] Configure learner
[WARNING 23-08-16 11:15:06.8494 UTC gradient_boosted_trees.cc:1818] "goss_alpha" set but "sampling_method" not equal to "GOSS".
[WARNING 23-08-16 11:15:06.8494 UTC gradient_boosted_trees.cc:1829] "goss_beta" set but "sampling_method" not equal to "GOSS".
[WARNING 23-08-16 11:15:06.8494 UTC gradient_boosted_trees.cc:1843] "selective_gradient_boosting_ratio" set but "sampling_method" not equal to "SELGB".
[INFO 23-08-16 11:15:06.8495
相关推荐
orion-orion1 小时前
贝叶斯机器学习:高斯分布及其共轭先验
机器学习·统计学习
余炜yw3 小时前
深入探讨激活函数在神经网络中的应用
人工智能·深度学习·机器学习
赛丽曼4 小时前
机器学习-分类算法评估标准
人工智能·机器学习·分类
池央5 小时前
StyleGAN - 基于样式的生成对抗网络
人工智能·神经网络·生成对抗网络
yuanbenshidiaos5 小时前
【大数据】机器学习----------计算机学习理论
大数据·学习·机器学习
汤姆和佩琦6 小时前
2025-1-20-sklearn学习(42) 使用scikit-learn计算 钿车罗帕,相逢处,自有暗尘随马。
人工智能·python·学习·机器学习·scikit-learn·sklearn
热爱编程的OP7 小时前
机器学习 vs 深度学习
人工智能·深度学习·机器学习
清图8 小时前
Python 预训练:打通视觉与大语言模型应用壁垒——Python预训练视觉和大语言模型
人工智能·python·深度学习·机器学习·计算机视觉·自然语言处理·ai作画
Francek Chen10 小时前
【深度学习基础】多层感知机 | 模型选择、欠拟合和过拟合
人工智能·pytorch·深度学习·神经网络·多层感知机·过拟合
好评笔记12 小时前
AIGC视频扩散模型新星:Video 版本的SD模型
论文阅读·深度学习·机器学习·计算机视觉·面试·aigc·transformer