Flink1.17实战教程(第二篇:DataStream API)

系列文章目录

Flink1.17实战教程(第一篇:概念、部署、架构)
Flink1.17实战教程(第二篇:DataStream API)
Flink1.17实战教程(第三篇:时间和窗口)
Flink1.17实战教程(第四篇:处理函数)
Flink1.17实战教程(第五篇:状态管理)
Flink1.17实战教程(第六篇:容错机制)
Flink1.17实战教程(第七篇:Flink SQL)


文章目录

  • 系列文章目录
  • [1. 执行环境(Execution Environment)](#1. 执行环境(Execution Environment))
    • [1.1 创建执行环境](#1.1 创建执行环境)
    • [1.2 执行模式(Execution Mode)](#1.2 执行模式(Execution Mode))
    • [1.3 触发程序执行](#1.3 触发程序执行)
  • [2. 源算子(Source)](#2. 源算子(Source))
    • [2.1 准备工作](#2.1 准备工作)
    • [2.2 从集合中读取数据](#2.2 从集合中读取数据)
    • [2.3 从文件读取数据](#2.3 从文件读取数据)
    • [2.4 从Socket读取数据](#2.4 从Socket读取数据)
    • [2.5 从Kafka读取数据](#2.5 从Kafka读取数据)
    • [2.6 从数据生成器读取数据](#2.6 从数据生成器读取数据)
    • [2.7 Flink支持的数据类型](#2.7 Flink支持的数据类型)
  • [3. 转换算子(Transformation)](#3. 转换算子(Transformation))
    • [3.1 基本转换算子(map/ filter/ flatMap)](#3.1 基本转换算子(map/ filter/ flatMap))
      • [3.1.1 映射(map)](#3.1.1 映射(map))
      • [3.1.2 过滤(filter)](#3.1.2 过滤(filter))
      • [3.1.3 扁平映射(flatMap)](#3.1.3 扁平映射(flatMap))
    • [3.2 聚合算子(Aggregation)](#3.2 聚合算子(Aggregation))
      • [3.2.1 按键分区(keyBy)](#3.2.1 按键分区(keyBy))
      • [3.2.2 简单聚合(sum/min/max/minBy/maxBy)](#3.2.2 简单聚合(sum/min/max/minBy/maxBy))
      • [3.2.3 归约聚合(reduce)](#3.2.3 归约聚合(reduce))
    • [3.3 用户自定义函数(UDF)](#3.3 用户自定义函数(UDF))
      • [3.3.1 函数类(Function Classes)](#3.3.1 函数类(Function Classes))
      • [3.3.2 富函数类(Rich Function Classes)](#3.3.2 富函数类(Rich Function Classes))
    • [3.4 物理分区算子(Physical Partitioning)](#3.4 物理分区算子(Physical Partitioning))
      • [3.4.1 随机分区(shuffle)](#3.4.1 随机分区(shuffle))
      • [3.4.2 轮询分区(Round-Robin)](#3.4.2 轮询分区(Round-Robin))
      • [3.4.3 重缩放分区(rescale)](#3.4.3 重缩放分区(rescale))
      • [3.4.4 广播(broadcast)](#3.4.4 广播(broadcast))
      • [3.4.5 全局分区(global)](#3.4.5 全局分区(global))
      • [3.4.6 自定义分区(Custom)](#3.4.6 自定义分区(Custom))
    • [3.5 分流](#3.5 分流)
      • [3.5.1 简单实现](#3.5.1 简单实现)
      • [3.5.2 使用侧输出流](#3.5.2 使用侧输出流)
    • [3.6 基本合流操作](#3.6 基本合流操作)
      • [3.6.1 联合(Union)](#3.6.1 联合(Union))
      • [3.6.2 连接(Connect)](#3.6.2 连接(Connect))
  • [4. 输出算子(Sink)](#4. 输出算子(Sink))
    • [4.1 连接到外部系统](#4.1 连接到外部系统)
    • [4.2 输出到文件](#4.2 输出到文件)
    • [4.3 输出到Kafka](#4.3 输出到Kafka)
    • [4.4 输出到MySQL(JDBC)](#4.4 输出到MySQL(JDBC))
    • [4.5 自定义Sink输出](#4.5 自定义Sink输出)

DataStream API是Flink的核心层API。一个Flink程序,其实就是对DataStream的各种转换。具体来说,代码基本上都由以下几部分构成:

1. 执行环境(Execution Environment)

Flink程序可以在各种上下文环境中运行:我们可以在本地JVM中执行程序,也可以提交到远程集群上运行。

不同的环境,代码的提交运行的过程会有所不同。这就要求我们在提交作业执行计算时,首先必须获取当前Flink的运行环境,从而建立起与Flink框架之间的联系。

1.1 创建执行环境

我们要获取的执行环境,是StreamExecutionEnvironment类的对象,这是所有Flink程序的基础。在代码中创建执行环境的方式,就是调用这个类的静态方法,具体有以下三种。

  • getExecutionEnvironment
    最简单的方式,就是直接调用getExecutionEnvironment方法。它会根据当前运行的上下文直接得到正确的结果:如果程序是独立运行的,就返回一个本地执行环境;如果是创建了jar包,然后从命令行调用它并提交到集群执行,那么就返回集群的执行环境。也就是说,这个方法会根据当前运行的方式,自行决定该返回什么样的运行环境。
java 复制代码
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

这种方式,用起来简单高效,是最常用的一种创建执行环境的方式。

  • createLocalEnvironment
    这个方法返回一个本地执行环境。可以在调用时传入一个参数,指定默认的并行度;如果不传入,则默认并行度就是本地的CPU核心数。
java 复制代码
StreamExecutionEnvironment localEnv = StreamExecutionEnvironment.createLocalEnvironment();
  • createRemoteEnvironment
    这个方法返回集群执行环境。需要在调用时指定JobManager的主机名和端口号,并指定要在集群中运行的Jar包。
java 复制代码
StreamExecutionEnvironment remoteEnv = StreamExecutionEnvironment
  		.createRemoteEnvironment(
    		"host",                   // JobManager主机名
    		1234,                     // JobManager进程端口号
   			"path/to/jarFile.jar"  // 提交给JobManager的JAR包
		); 

在获取到程序执行环境后,我们还可以对执行环境进行灵活的设置。比如可以全局设置程序的并行度、禁用算子链,还可以定义程序的时间语义、配置容错机制。

1.2 执行模式(Execution Mode)

从Flink 1.12开始,官方推荐的做法是直接使用DataStream API,在提交任务时通过将执行模式设为BATCH来进行批处理。不建议使用DataSet API。

java 复制代码
// 流处理环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

DataStream API执行模式包括:流执行模式、批执行模式和自动模式。

  • 流执行模式(Streaming)
    这是DataStream API最经典的模式,一般用于需要持续实时处理的无界数据流。默认情况下,程序使用的就是Streaming执行模式
  • 批执行模式(Batch)
    专门用于批处理的执行模式。
  • 自动模式(AutoMatic)
    在这种模式下,将由程序根据输入数据源是否有界,来自动选择执行模式。

批执行模式的使用。主要有两种方式:
(1)通过命令行配置

shell 复制代码
bin/flink run -Dexecution.runtime-mode=BATCH ...

在提交作业时,增加execution.runtime-mode参数,指定值为BATCH。

(2)通过代码配置

shell 复制代码
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setRuntimeMode(RuntimeExecutionMode.BATCH);

在代码中,直接基于执行环境调用setRuntimeMode方法,传入BATCH模式。
实际应用中一般不会在代码中配置,而是使用命令行,这样更加灵活

1.3 触发程序执行

需要注意的是,写完输出(sink)操作并不代表程序已经结束。因为当main()方法被调用时,其实只是定义了作业的每个执行操作,然后添加到数据流图中;这时并没有真正处理数据------因为数据可能还没来。Flink是由事件驱动的,只有等到数据到来,才会触发真正的计算,这也被称为"延迟执行""懒执行"

所以我们需要显式地调用执行环境的execute()方法,来触发程序执行。execute()方法将一直等待作业完成,然后返回一个执行结果(JobExecutionResult)。

java 复制代码
env.execute();

2. 源算子(Source)

Flink可以从各种来源获取数据,然后构建DataStream进行转换处理。一般将数据的输入来源称为数据源(data source),而读取数据的算子就是源算子(source operator)。所以,source就是我们整个处理程序的输入端。

在Flink1.12以前,旧的添加source的方式,是调用执行环境的addSource()方法:

java 复制代码
DataStream<String> stream = env.addSource(...);

方法传入的参数是一个"源函数"(source function),需要实现SourceFunction接口。

从Flink1.12开始,主要使用流批统一的新Source架构:

java 复制代码
DataStreamSource<String> stream = env.fromSource(...)

Flink直接提供了很多预实现的接口,此外还有很多外部连接工具也帮我们实现了对应的Source,通常情况下足以应对我们的实际需求。

2.1 准备工作

为了方便练习,这里使用WaterSensor作为数据模型。

字段名 数据类型 说明
id String 水位传感器类型
ts Long 传感器记录时间戳
vc Integer 水位记录

具体代码如下:

java 复制代码
public class WaterSensor {
    public String id;
    public Long ts;
    public Integer vc;

    public WaterSensor() {
    }

    public WaterSensor(String id, Long ts, Integer vc) {
        this.id = id;
        this.ts = ts;
        this.vc = vc;
    }

    public String getId() {
        return id;
    }

    public void setId(String id) {
        this.id = id;
    }

    public Long getTs() {
        return ts;
    }

    public void setTs(Long ts) {
        this.ts = ts;
    }

    public Integer getVc() {
        return vc;
    }

    public void setVc(Integer vc) {
        this.vc = vc;
    }

    @Override
    public String toString() {
        return "WaterSensor{" +
                "id='" + id + '\'' +
                ", ts=" + ts +
                ", vc=" + vc +
                '}';
    }

    @Override
    public boolean equals(Object o) {
        if (this == o) {
            return true;
        }
        if (o == null || getClass() != o.getClass()) {
            return false;
        }
        WaterSensor that = (WaterSensor) o;
        return Objects.equals(id, that.id) &&
                Objects.equals(ts, that.ts) &&
                Objects.equals(vc, that.vc);
    }

    @Override
    public int hashCode() {

        return Objects.hash(id, ts, vc);
    }
}

这里需要注意,我们定义的WaterSensor,有这样几个特点:

  • 类是公有(public)的
  • 有一个无参的构造方法
  • 所有属性都是公有(public)的
  • 所有属性的类型都是可以序列化的

Flink会把这样的类作为一种特殊的POJO(Plain Ordinary Java Object简单的Java对象,实际就是普通JavaBeans)数据类型来对待,方便数据的解析和序列化。另外我们在类中还重写了toString方法,主要是为了测试输出显示更清晰。

我们这里自定义的POJO类会在后面的代码中频繁使用,所以在后面的代码中碰到,把这里的POJO类导入就好了。

2.2 从集合中读取数据

最简单的读取数据的方式,就是在代码中直接创建一个Java集合,然后调用执行环境的fromCollection方法进行读取。这相当于将数据临时存储到内存中,形成特殊的数据结构后,作为数据源使用,一般用于测试。

java 复制代码
public static void main(String[] args) throws Exception {

    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

    
List<Integer> data = Arrays.asList(1, 22, 3);
        DataStreamSource<Integer> ds = env.fromCollection(data);

	stream.print();

    env.execute();
}

2.3 从文件读取数据

真正的实际应用中,自然不会直接将数据写在代码中。通常情况下,我们会从存储介质中获取数据,一个比较常见的方式就是读取日志文件。这也是批处理中最常见的读取方式。

读取文件,需要添加文件连接器依赖:

java 复制代码
<dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-files</artifactId>
            <version>${flink.version}</version>
</dependency>

示例如下:

java 复制代码
public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        FileSource<String> fileSource = FileSource.forRecordStreamFormat(new TextLineInputFormat(), new Path("input/word.txt")).build();
        env.fromSource(fileSource,WatermarkStrategy.noWatermarks(),"file")
        .print();
        env.execute();
}

说明:

  • 参数可以是目录,也可以是文件;还可以从HDFS目录下读取,使用路径hdfs://...;
  • 路径可以是相对路径,也可以是绝对路径;
  • 相对路径是从系统属性user.dir获取路径:idea下是project的根目录,standalone模式下是集群节点根目录;

2.4 从Socket读取数据

不论从集合还是文件,我们读取的其实都是有界数据。在流处理的场景中,数据往往是无界的。

我们之前用到的读取socket文本流,就是流处理场景。但是这种方式由于吞吐量小、稳定性较差,一般也是用于测试。

java 复制代码
DataStream<String> stream = env.socketTextStream("localhost", 7777);

2.5 从Kafka读取数据

Flink官方提供了连接工具flink-connector-kafka,直接帮我们实现了一个消费者FlinkKafkaConsumer,它就是用来读取Kafka数据的SourceFunction。

所以想要以Kafka作为数据源获取数据,我们只需要引入Kafka连接器的依赖。Flink官方提供的是一个通用的Kafka连接器,它会自动跟踪最新版本的Kafka客户端。目前最新版本只支持0.10.0版本以上的Kafka。这里我们需要导入的依赖如下。

java 复制代码
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-kafka</artifactId>
    <version>${flink.version}</version>
</dependency>

代码如下:

java 复制代码
public class SourceKafka {
    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        KafkaSource<String> kafkaSource = KafkaSource.<String>builder()
            .setBootstrapServers("hadoop102:9092")
            .setTopics("topic_1")
            .setGroupId("atguigu")
            .setStartingOffsets(OffsetsInitializer.latest())
            .setValueOnlyDeserializer(new SimpleStringSchema()) 
            .build();

        DataStreamSource<String> stream = env.fromSource(kafkaSource, WatermarkStrategy.noWatermarks(), "kafka-source");

        stream.print("Kafka");

        env.execute();
    }
}

2.6 从数据生成器读取数据

Flink从1.11开始提供了一个内置的DataGen 连接器,主要是用于生成一些随机数,用于在没有数据源的时候,进行流任务的测试以及性能测试等。1.17提供了新的Source写法,需要导入依赖:

java 复制代码
<dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-datagen</artifactId>
            <version>${flink.version}</version>
        </dependency>

代码如下:

java 复制代码
public class DataGeneratorDemo {
    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        DataGeneratorSource<String> dataGeneratorSource =
                new DataGeneratorSource<>(
                        new GeneratorFunction<Long, String>() {
                            @Override
                            public String map(Long value) throws Exception {
                                return "Number:"+value;
                            }
                        },
                        Long.MAX_VALUE,
                        RateLimiterStrategy.perSecond(10),
                        Types.STRING
                );

        env.fromSource(dataGeneratorSource, WatermarkStrategy.noWatermarks(), "datagenerator")
                .print();

        env.execute();
    }
}

2.7 Flink支持的数据类型

1)Flink的类型系统

Flink使用"类型信息"(TypeInformation)来统一表示数据类型。TypeInformation类是Flink中所有类型描述符的基类。它涵盖了类型的一些基本属性,并为每个数据类型生成特定的序列化器、反序列化器和比较器。

2)Flink支持的数据类型

对于常见的Java和Scala数据类型,Flink都是支持的。Flink在内部,Flink对支持不同的类型进行了划分,这些类型可以在Types工具类中找到:

(1)基本类型

所有Java基本类型及其包装类,再加上Void、String、Date、BigDecimal和BigInteger。
(2)数组类型

包括基本类型数组(PRIMITIVE_ARRAY)和对象数组(OBJECT_ARRAY)。
(3)复合数据类型

  • Java元组类型(TUPLE):这是Flink内置的元组类型,是Java API的一部分。最多25个字段,也就是从Tuple0~Tuple25,不支持空字段。
  • Scala 样例类及Scala元组:不支持空字段。
  • 行类型(ROW):可以认为是具有任意个字段的元组,并支持空字段。
  • POJO:Flink自定义的类似于Java bean模式的类。

(4)辅助类型

Option、Either、List、Map等。
(5)泛型类型(GENERIC)

Flink支持所有的Java类和Scala类。不过如果没有按照上面POJO类型的要求来定义,就会被Flink当作泛型类来处理。Flink会把泛型类型当作黑盒,无法获取它们内部的属性;它们也不是由Flink本身序列化的,而是由Kryo序列化的

在这些类型中,元组类型和POJO类型最为灵活,因为它们支持创建复杂类型。而相比之下,POJO还支持在键(key)的定义中直接使用字段名,这会让我们的代码可读性大大增加。所以,在项目实践中,往往会将流处理程序中的元素类型定为Flink的POJO类型。

Flink对POJO类型的要求如下:

  • 类是公有(public)的
  • 有一个无参的构造方法
  • 所有属性都是公有(public)的
  • 所有属性的类型都是可以序列化的

3)类型提示(Type Hints)

Flink还具有一个类型提取系统,可以分析函数的输入和返回类型,自动获取类型信息,从而获得对应的序列化器和反序列化器。但是,由于Java中泛型擦除的存在,在某些特殊情况下(比如Lambda表达式中),自动提取的信息是不够精细的------只告诉Flink当前的元素由"船头、船身、船尾"构成,根本无法重建出"大船"的模样;这时就需要显式地提供类型信息,才能使应用程序正常工作或提高其性能。

为了解决这类问题,Java API提供了专门的"类型提示"(type hints)。

回忆一下之前的word count流处理程序,我们在将String类型的每个词转换成(word,count)二元组后,就明确地用returns指定了返回的类型。因为对于map里传入的Lambda表达式,系统只能推断出返回的是Tuple2类型,而无法得到Tuple2<String, Long>。只有显式地告诉系统当前的返回类型,才能正确地解析出完整数据。

java 复制代码
.map(word -> Tuple2.of(word, 1L))
.returns(Types.TUPLE(Types.STRING, Types.LONG));

Flink还专门提供了TypeHint类,它可以捕获泛型的类型信息,并且一直记录下来,为运行时提供足够的信息。我们同样可以通过.returns()方法,明确地指定转换之后的DataStream里元素的类型。

java 复制代码
returns(new TypeHint<Tuple2<Integer, SomeType>>(){})

3. 转换算子(Transformation)

数据源读入数据之后,我们就可以使用各种转换算子,将一个或多个DataStream转换为新的DataStream。

3.1 基本转换算子(map/ filter/ flatMap)

3.1.1 映射(map)

map是大家非常熟悉的大数据操作算子,主要用于将数据流中的数据进行转换,形成新的数据流。简单来说,就是一个"一一映射",消费一个元素就产出一个元素。

我们只需要基于DataStream调用map()方法就可以进行转换处理。方法需要传入的参数是接口MapFunction的实现;返回值类型还是DataStream,不过泛型(流中的元素类型)可能改变。

下面的代码用不同的方式,实现了提取WaterSensor中的id字段的功能。

java 复制代码
public class TransMap {
    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        DataStreamSource<WaterSensor> stream = env.fromElements(
                new WaterSensor("sensor_1", 1, 1),
                new WaterSensor("sensor_2", 2, 2)
        );

        // 方式一:传入匿名类,实现MapFunction
        stream.map(new MapFunction<WaterSensor, String>() {
            @Override
            public String map(WaterSensor e) throws Exception {
                return e.id;
            }
        }).print();

        // 方式二:传入MapFunction的实现类
        // stream.map(new UserMap()).print();

        env.execute();
    }

    public static class UserMap implements MapFunction<WaterSensor, String> {
        @Override
        public String map(WaterSensor e) throws Exception {
            return e.id;
        }
    }
}

上面代码中,MapFunction实现类的泛型类型,与输入数据类型和输出数据的类型有关。在实现MapFunction接口的时候,需要指定两个泛型,分别是输入事件和输出事件的类型,还需要重写一个map()方法,定义从一个输入事件转换为另一个输出事件的具体逻辑。

3.1.2 过滤(filter)

filter转换操作,顾名思义是对数据流执行一个过滤,通过一个布尔条件表达式设置过滤条件,对于每一个流内元素进行判断,若为true则元素正常输出,若为false则元素被过滤掉。

进行filter转换之后的新数据流的数据类型与原数据流是相同的。filter转换需要传入的参数需要实现FilterFunction接口,而FilterFunction内要实现filter()方法,就相当于一个返回布尔类型的条件表达式。
案例需求:下面的代码会将数据流中传感器id为sensor_1的数据过滤出来。

java 复制代码
public class TransFilter {
    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        DataStreamSource<WaterSensor> stream = env.fromElements(
                
new WaterSensor("sensor_1", 1, 1),
new WaterSensor("sensor_1", 2, 2),
new WaterSensor("sensor_2", 2, 2),
new WaterSensor("sensor_3", 3, 3)
        );

        // 方式一:传入匿名类实现FilterFunction
        stream.filter(new FilterFunction<WaterSensor>() {
            @Override
            public boolean filter(WaterSensor e) throws Exception {
                return e.id.equals("sensor_1");
            }
        }).print();

        // 方式二:传入FilterFunction实现类
        // stream.filter(new UserFilter()).print();
        
        env.execute();
    }
    public static class UserFilter implements FilterFunction<WaterSensor> {
        @Override
        public boolean filter(WaterSensor e) throws Exception {
            return e.id.equals("sensor_1");
        }
    }
}

3.1.3 扁平映射(flatMap)

flatMap操作又称为扁平映射,主要是将数据流中的整体(一般是集合类型)拆分成一个一个的个体使用。消费一个元素,可以产生0到多个元素。flatMap可以认为是"扁平化"(flatten)和"映射"(map)两步操作的结合,也就是先按照某种规则对数据进行打散拆分,再对拆分后的元素做转换处理。

同map一样,flatMap也可以使用Lambda表达式或者FlatMapFunction接口实现类的方式来进行传参,返回值类型取决于所传参数的具体逻辑,可以与原数据流相同,也可以不同。
案例需求 :如果输入的数据是sensor_1,只打印vc;如果输入的数据是sensor_2,既打印ts又打印vc。

实现代码如下:

java 复制代码
public class TransFlatmap {
    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        DataStreamSource<WaterSensor> stream = env.fromElements(      
			new WaterSensor("sensor_1", 1, 1),
			new WaterSensor("sensor_1", 2, 2),
			new WaterSensor("sensor_2", 2, 2),
			new WaterSensor("sensor_3", 3, 3)
        );

        stream.flatMap(new MyFlatMap()).print();

        env.execute();
    }

    public static class MyFlatMap implements FlatMapFunction<WaterSensor, String> {

        @Override
        public void flatMap(WaterSensor value, Collector<String> out) throws Exception {

            if (value.id.equals("sensor_1")) {
                out.collect(String.valueOf(value.vc));
            } else if (value.id.equals("sensor_2")) {
                out.collect(String.valueOf(value.ts));
                out.collect(String.valueOf(value.vc));
            }
        }
    }
} 

3.2 聚合算子(Aggregation)

计算的结果不仅依赖当前数据,还跟之前的数据有关,相当于要把所有数据聚在一起进行汇总合并------这就是所谓的"聚合"(Aggregation),类似于MapReduce中的reduce操作。

3.2.1 按键分区(keyBy)

对于Flink而言,DataStream是没有直接进行聚合的API的。因为我们对海量数据做聚合肯定要进行分区并行处理,这样才能提高效率。所以在Flink中,要做聚合,需要先进行分区;这个操作就是通过keyBy来完成的。

keyBy是聚合前必须要用到的一个算子。keyBy通过指定键(key),可以将一条流从逻辑上划分成不同的分区(partitions)。这里所说的分区,其实就是并行处理的子任务。

基于不同的key,流中的数据将被分配到不同的分区中去;这样一来,所有具有相同的key的数据,都将被发往同一个分区。

在内部,是通过计算key的哈希值(hash code),对分区数进行取模运算来实现的。所以这里key如果是POJO的话,必须要重写hashCode()方法。

keyBy()方法需要传入一个参数,这个参数指定了一个或一组key。有很多不同的方法来指定key:比如对于Tuple数据类型,可以指定字段的位置或者多个位置的组合;对于POJO类型,可以指定字段的名称(String);另外,还可以传入Lambda表达式或者实现一个键选择器(KeySelector),用于说明从数据中提取key的逻辑。

我们可以以id作为key做一个分区操作,代码实现如下:

java 复制代码
public class TransKeyBy {
    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        DataStreamSource<WaterSensor> stream = env.fromElements(
new WaterSensor("sensor_1", 1, 1),
new WaterSensor("sensor_1", 2, 2),
new WaterSensor("sensor_2", 2, 2),
new WaterSensor("sensor_3", 3, 3)
        );

        // 方式一:使用Lambda表达式
        KeyedStream<WaterSensor, String> keyedStream = stream.keyBy(e -> e.id);

        // 方式二:使用匿名类实现KeySelector
        KeyedStream<WaterSensor, String> keyedStream1 = stream.keyBy(new KeySelector<WaterSensor, String>() {
            @Override
            public String getKey(WaterSensor e) throws Exception {
                return e.id;
            }
        });

        env.execute();
    }
}

需要注意的是,keyBy得到的结果将不再是DataStream,而是会将DataStream转换为KeyedStream。KeyedStream可以认为是"分区流"或者"键控流",它是对DataStream按照key的一个逻辑分区,所以泛型有两个类型:除去当前流中的元素类型外,还需要指定key的类型。

KeyedStream也继承自DataStream,所以基于它的操作也都归属于DataStream API。但它跟之前的转换操作得到的SingleOutputStreamOperator不同,只是一个流的分区操作,并不是一个转换算子。KeyedStream是一个非常重要的数据结构,只有基于它才可以做后续的聚合操作(比如sum,reduce)。

3.2.2 简单聚合(sum/min/max/minBy/maxBy)

有了按键分区的数据流KeyedStream,我们就可以基于它进行聚合操作了。Flink为我们内置实现了一些最基本、最简单的聚合API,主要有以下几种:

  • sum():在输入流上,对指定的字段做叠加求和的操作。
  • min():在输入流上,对指定的字段求最小值。
  • max():在输入流上,对指定的字段求最大值。
  • minBy():与min()类似,在输入流上针对指定字段求最小值。不同的是,min()只计算指定字段的最小值,其他字段会保留最初第一个数据的值;而minBy()则会返回包含字段最小值的整条数据。
  • maxBy():与max()类似,在输入流上针对指定字段求最大值。两者区别与min()/minBy()完全一致。

简单聚合算子使用非常方便,语义也非常明确。这些聚合方法调用时,也需要传入参数;但并不像基本转换算子那样需要实现自定义函数,只要说明聚合指定的字段就可以了。指定字段的方式有两种:指定位置,和指定名称

对于元组类型的数据,可以使用这两种方式来指定字段。需要注意的是,元组中字段的名称,是以f0、f1、f2、...来命名的。

如果数据流的类型是POJO类,那么就只能通过字段名称来指定,不能通过位置来指定了。

java 复制代码
public class TransAggregation {

    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        DataStreamSource<WaterSensor> stream = env.fromElements(
new WaterSensor("sensor_1", 1, 1),
new WaterSensor("sensor_1", 2, 2),
new WaterSensor("sensor_2", 2, 2),
new WaterSensor("sensor_3", 3, 3)
        );

        stream.keyBy(e -> e.id).max("vc");    // 指定字段名称

        env.execute();
    }
}

简单聚合算子返回的,同样是一个SingleOutputStreamOperator,也就是从KeyedStream又转换成了常规的DataStream。所以可以这样理解:keyBy和聚合是成对出现的,先分区、后聚合,得到的依然是一个DataStream。而且经过简单聚合之后的数据流,元素的数据类型保持不变。

一个聚合算子,会为每一个key保存一个聚合的值,在Flink中我们把它叫作"状态"(state)。所以每当有一个新的数据输入,算子就会更新保存的聚合结果,并发送一个带有更新后聚合值的事件到下游算子。对于无界流来说,这些状态是永远不会被清除的,所以我们使用聚合算子,应该只用在含有有限个key的数据流上。

3.2.3 归约聚合(reduce)

reduce可以对已有的数据进行归约处理,把每一个新输入的数据和当前已经归约出来的值,再做一个聚合计算。

reduce操作也会将KeyedStream转换为DataStream。它不会改变流的元素数据类型,所以输出类型和输入类型是一样的。

调用KeyedStream的reduce方法时,需要传入一个参数,实现ReduceFunction接口。接口在源码中的定义如下:

java 复制代码
public interface ReduceFunction<T> extends Function, Serializable {
    T reduce(T value1, T value2) throws Exception;
}

ReduceFunction接口里需要实现reduce()方法,这个方法接收两个输入事件,经过转换处理之后输出一个相同类型的事件。在流处理的底层实现过程中,实际上是将中间"合并的结果"作为任务的一个状态保存起来的;之后每来一个新的数据,就和之前的聚合状态进一步做归约。

我们可以单独定义一个函数类实现ReduceFunction接口,也可以直接传入一个匿名类。当然,同样也可以通过传入Lambda表达式实现类似的功能

为了方便后续使用,定义一个WaterSensorMapFunction:

java 复制代码
public class WaterSensorMapFunction implements MapFunction<String,WaterSensor> {
    @Override
    public WaterSensor map(String value) throws Exception {
        String[] datas = value.split(",");
        return new WaterSensor(datas[0],Long.valueOf(datas[1]) ,Integer.valueOf(datas[2]) );
    }
}

案例:使用reduce实现max和maxBy的功能。

java 复制代码
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

env
   .socketTextStream("hadoop102", 7777)
   .map(new WaterSensorMapFunction())
   .keyBy(WaterSensor::getId)
   .reduce(new ReduceFunction<WaterSensor>()
   {
       @Override
       public WaterSensor reduce(WaterSensor value1, WaterSensor value2) throws Exception {
           System.out.println("Demo7_Reduce.reduce");

           int maxVc = Math.max(value1.getVc(), value2.getVc());
           //实现max(vc)的效果  取最大值,其他字段以当前组的第一个为主
           //value1.setVc(maxVc);
           //实现maxBy(vc)的效果  取当前最大值的所有字段
           if (value1.getVc() > value2.getVc()){
               value1.setVc(maxVc);
               return value1;
           }else {
               value2.setVc(maxVc);
               return value2;
           }
       }
   })
   .print();
env.execute();

reduce同简单聚合算子一样,也要针对每一个key保存状态。因为状态不会清空,所以我们需要将reduce算子作用在一个有限key的流上。

3.3 用户自定义函数(UDF)

用户自定义函数(user-defined function,UDF),即用户可以根据自身需求,重新实现算子的逻辑。

用户自定义函数分为:函数类、匿名函数、富函数类。

3.3.1 函数类(Function Classes)

Flink暴露了所有UDF函数的接口,具体实现方式为接口或者抽象类,例如MapFunction、FilterFunction、ReduceFunction等。所以用户可以自定义一个函数类,实现对应的接口。
需求 :用来从用户的点击数据中筛选包含"sensor_1"的内容:
方式一:实现FilterFunction接口

java 复制代码
public class TransFunctionUDF {

    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        DataStreamSource<WaterSensor> stream = env.fromElements(
                
new WaterSensor("sensor_1", 1, 1),
new WaterSensor("sensor_1", 2, 2),
new WaterSensor("sensor_2", 2, 2),
new WaterSensor("sensor_3", 3, 3)
        );
       
        DataStream<String> filter = stream.filter(new UserFilter());
      
        filter.print();
        env.execute();
    }

    public static class UserFilter implements FilterFunction<WaterSensor> {
        @Override
        public boolean filter(WaterSensor e) throws Exception {
            return e.id.equals("sensor_1");
        }
    }
}

方式二:通过匿名类来实现FilterFunction接口:

java 复制代码
DataStream<String> stream = stream.filter(new FilterFunction< WaterSensor>() {
    @Override
    public boolean filter(WaterSensor e) throws Exception {
        return e.id.equals("sensor_1");
    }
});

方式二的优化:为了类可以更加通用,我们还可以将用于过滤的关键字"home"抽象出来作为类的属性,调用构造方法时传进去。

java 复制代码
DataStreamSource<WaterSensor> stream = env.fromElements(        
new WaterSensor("sensor_1", 1, 1),
new WaterSensor("sensor_1", 2, 2),
new WaterSensor("sensor_2", 2, 2),
new WaterSensor("sensor_3", 3, 3)
);

DataStream<String> stream = stream.filter(new FilterFunctionImpl("sensor_1"));

public static class FilterFunctionImpl implements FilterFunction<WaterSensor> {
    private String id;

    FilterFunctionImpl(String id) { this.id=id; }

    @Override
    public boolean filter(WaterSensor value) throws Exception {
        return thid.id.equals(value.id);
    }
}

方式三:采用匿名函数(Lambda)

java 复制代码
public class TransFunctionUDF {

    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        DataStreamSource<WaterSensor> stream = env.fromElements(
                
new WaterSensor("sensor_1", 1, 1),
new WaterSensor("sensor_1", 2, 2),
new WaterSensor("sensor_2", 2, 2),
new WaterSensor("sensor_3", 3, 3)
        );    

        //map函数使用Lambda表达式,不需要进行类型声明
        SingleOutputStreamOperator<String> filter = stream.filter(sensor -> "sensor_1".equals(sensor.id));

        filter.print();

        env.execute();
    }
}

3.3.2 富函数类(Rich Function Classes)

"富函数类"也是DataStream API提供的一个函数类的接口,所有的Flink函数类都有其Rich版本。富函数类一般是以抽象类的形式出现的。例如:RichMapFunction、RichFilterFunction、RichReduceFunction等。

与常规函数类的不同主要在于,富函数类可以获取运行环境的上下文,并拥有一些生命周期方法,所以可以实现更复杂的功能。

Rich Function有生命周期的概念。典型的生命周期方法有:

  • open()方法,是Rich Function的初始化方法,也就是会开启一个算子的生命周期。当一个算子的实际工作方法例如map()或者filter()方法被调用之前,open()会首先被调用。
  • close()方法,是生命周期中的最后一个调用的方法,类似于结束方法。一般用来做一些清理工作。

需要注意的是,这里的生命周期方法,对于一个并行子任务来说只会调用一次;而对应的,实际工作方法,例如RichMapFunction中的map(),在每条数据到来后都会触发一次调用。

来看一个例子说明:

java 复制代码
public class RichFunctionExample {

    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(2);

        env
                .fromElements(1,2,3,4)
                .map(new RichMapFunction<Integer, Integer>() {
                    @Override
                    public void open(Configuration parameters) throws Exception {
                        super.open(parameters);
                        System.out.println("索引是:" + getRuntimeContext().getIndexOfThisSubtask() + " 的任务的生命周期开始");
                    }

                    @Override
                    public Integer map(Integer integer) throws Exception {
                        return integer + 1;
                    }

                    @Override
                    public void close() throws Exception {
                        super.close();
                        System.out.println("索引是:" + getRuntimeContext().getIndexOfThisSubtask() + " 的任务的生命周期结束");
                    }
                })
                .print();

        env.execute();
    }
}

3.4 物理分区算子(Physical Partitioning)

常见的物理分区策略有:随机分配(Random)、轮询分配(Round-Robin)、重缩放(Rescale)和广播(Broadcast)。

3.4.1 随机分区(shuffle)

最简单的重分区方式就是直接"洗牌"。通过调用DataStream的.shuffle()方法,将数据随机地分配到下游算子的并行任务中去。

随机分区服从均匀分布(uniform distribution),所以可以把流中的数据随机打乱,均匀地传递到下游任务分区。因为是完全随机的,所以对于同样的输入数据, 每次执行得到的结果也不会相同。

经过随机分区之后,得到的依然是一个DataStream。

我们可以做个简单测试:将数据读入之后直接打印到控制台,将输出的并行度设置为2,中间经历一次shuffle。执行多次,观察结果是否相同。

java 复制代码
public class ShuffleExample {
    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

		 env.setParallelism(2);

        DataStreamSource<Integer> stream = env.socketTextStream("hadoop102", 7777);;

        stream.shuffle().print()

        env.execute();
    }
}

3.4.2 轮询分区(Round-Robin)

轮询,简单来说就是"发牌",按照先后顺序将数据做依次分发。通过调用DataStream的.rebalance()方法,就可以实现轮询重分区。rebalance使用的是Round-Robin负载均衡算法,可以将输入流数据平均分配到下游的并行任务中去。

java 复制代码
stream.rebalance()

3.4.3 重缩放分区(rescale)

重缩放分区和轮询分区非常相似。当调用rescale()方法时,其实底层也是使用Round-Robin算法进行轮询,但是只会将数据轮询发送到下游并行任务的一部分中。rescale的做法是分成小团体,发牌人只给自己团体内的所有人轮流发牌

java 复制代码
stream.rescale()

3.4.4 广播(broadcast)

这种方式其实不应该叫做"重分区",因为经过广播之后,数据会在不同的分区都保留一份,可能进行重复处理。可以通过调用DataStream的broadcast()方法,将输入数据复制并发送到下游算子的所有并行任务中去。

java 复制代码
stream.broadcast()

3.4.5 全局分区(global)

全局分区也是一种特殊的分区方式。这种做法非常极端,通过调用.global()方法,会将所有的输入流数据都发送到下游算子的第一个并行子任务中去。这就相当于强行让下游任务并行度变成了1,所以使用这个操作需要非常谨慎,可能对程序造成很大的压力。

java 复制代码
stream.global()

3.4.6 自定义分区(Custom)

当Flink提供的所有分区策略都不能满足用户的需求时,我们可以通过使用partitionCustom()方法来自定义分区策略。

1)自定义分区器

java 复制代码
public class MyPartitioner implements Partitioner<String> {

    @Override
    public int partition(String key, int numPartitions) {
        return Integer.parseInt(key) % numPartitions;
    }
}

2)使用自定义分区

java 复制代码
public class PartitionCustomDemo {
    public static void main(String[] args) throws Exception {
//        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(new Configuration());

        env.setParallelism(2);

        DataStreamSource<String> socketDS = env.socketTextStream("hadoop102", 7777);

        DataStream<String> myDS = socketDS
                .partitionCustom(
                        new MyPartitioner(),
                        value -> value);
                

        myDS.print();

        env.execute();
    }
}

3.5 分流

所谓"分流",就是将一条数据流拆分成完全独立的两条、甚至多条流。也就是基于一个DataStream,定义一些筛选条件,将符合条件的数据拣选出来放到对应的流里。

3.5.1 简单实现

其实根据条件筛选数据的需求,本身非常容易实现:只要针对同一条流多次独立调用.filter()方法进行筛选,就可以得到拆分之后的流了。
案例需求 :读取一个整数数字流,将数据流划分为奇数流和偶数流。
代码实现

java 复制代码
public class SplitStreamByFilter {

    public static void main(String[] args) throws Exception {

        
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
      
        SingleOutputStreamOperator<Integer> ds = env.socketTextStream("hadoop102", 7777)
                                                           .map(Integer::valueOf);
        //将ds 分为两个流 ,一个是奇数流,一个是偶数流
        //使用filter 过滤两次
        SingleOutputStreamOperator<Integer> ds1 = ds.filter(x -> x % 2 == 0);
        SingleOutputStreamOperator<Integer> ds2 = ds.filter(x -> x % 2 == 1);

        ds1.print("偶数");
        ds2.print("奇数");
        
        env.execute();
    }
}

这种实现非常简单,但代码显得有些冗余------我们的处理逻辑对拆分出的三条流其实是一样的,却重复写了三次。而且这段代码背后的含义,是将原始数据流stream复制三份,然后对每一份分别做筛选;这明显是不够高效的。我们自然想到,能不能不用复制流,直接用一个算子就把它们都拆分开呢?

3.5.2 使用侧输出流

关于处理函数中侧输出流的用法,我们已经在7.5节做了详细介绍。简单来说,只需要调用上下文ctx的.output()方法,就可以输出任意类型的数据了。而侧输出流的标记和提取,都离不开一个"输出标签"(OutputTag),指定了侧输出流的id和类型。
代码实现:将WaterSensor按照Id类型进行分流。

java 复制代码
public class SplitStreamByOutputTag {    
public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        SingleOutputStreamOperator<WaterSensor> ds = env.socketTextStream("hadoop102", 7777)
              .map(new WaterSensorMapFunction());


        OutputTag<WaterSensor> s1 = new OutputTag<>("s1", Types.POJO(WaterSensor.class)){};
        OutputTag<WaterSensor> s2 = new OutputTag<>("s2", Types.POJO(WaterSensor.class)){};
       //返回的都是主流
        SingleOutputStreamOperator<WaterSensor> ds1 = ds.process(new ProcessFunction<WaterSensor, WaterSensor>()
        {
            @Override
            public void processElement(WaterSensor value, Context ctx, Collector<WaterSensor> out) throws Exception {

                if ("s1".equals(value.getId())) {
                    ctx.output(s1, value);
                } else if ("s2".equals(value.getId())) {
                    ctx.output(s2, value);
                } else {
                    //主流
                    out.collect(value);
                }

            }
        });

        ds1.print("主流,非s1,s2的传感器");
        SideOutputDataStream<WaterSensor> s1DS = ds1.getSideOutput(s1);
        SideOutputDataStream<WaterSensor> s2DS = ds1.getSideOutput(s2);

        s1DS.printToErr("s1");
        s2DS.printToErr("s2");
        
        env.execute();
 
}
}

3.6 基本合流操作

在实际应用中,我们经常会遇到来源不同的多条流,需要将它们的数据进行联合处理。所以Flink中合流的操作会更加普遍,对应的API也更加丰富。

3.6.1 联合(Union)

最简单的合流操作,就是直接将多条流合在一起,叫作流的"联合"(union)。联合操作要求必须流中的数据类型必须相同,合并之后的新流会包括所有流中的元素,数据类型不变。

在代码中,我们只要基于DataStream直接调用.union()方法,传入其他DataStream作为参数,就可以实现流的联合了;得到的依然是一个DataStream:

java 复制代码
stream1.union(stream2, stream3, ...)

注意:union()的参数可以是多个DataStream,所以联合操作可以实现多条流的合并。
代码实现:我们可以用下面的代码做一个简单测试:

java 复制代码
public class UnionExample {

    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        env.setParallelism(1);

        DataStreamSource<Integer> ds1 = env.fromElements(1, 2, 3);
        DataStreamSource<Integer> ds2 = env.fromElements(2, 2, 3);
        DataStreamSource<String> ds3 = env.fromElements("2", "2", "3");

        ds1.union(ds2,ds3.map(Integer::valueOf))
           .print();

        env.execute();
    }
}

3.6.2 连接(Connect)

流的联合虽然简单,不过受限于数据类型不能改变,灵活性大打折扣,所以实际应用较少出现。除了联合(union),Flink还提供了另外一种方便的合流操作------连接(connect)。

1)连接流(ConnectedStreams)

代码实现:需要分为两步:首先基于一条DataStream调用.connect()方法,传入另外一条DataStream作为参数,将两条流连接起来,得到一个ConnectedStreams;然后再调用同处理方法得到DataStream。这里可以的调用的同处理方法有.map()/.flatMap(),以及.process()方法。

java 复制代码
public class ConnectDemo {

    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

//        DataStreamSource<Integer> source1 = env.fromElements(1, 2, 3);
//        DataStreamSource<String> source2 = env.fromElements("a", "b", "c");

        SingleOutputStreamOperator<Integer> source1 = env
                .socketTextStream("hadoop102", 7777)
                .map(i -> Integer.parseInt(i));

        DataStreamSource<String> source2 = env.socketTextStream("hadoop102", 8888);

        /**
         * TODO 使用 connect 合流
         * 1、一次只能连接 2条流
         * 2、流的数据类型可以不一样
         * 3、 连接后可以调用 map、flatmap、process来处理,但是各处理各的
         */
        ConnectedStreams<Integer, String> connect = source1.connect(source2);

        SingleOutputStreamOperator<String> result = connect.map(new CoMapFunction<Integer, String, String>() {
            @Override
            public String map1(Integer value) throws Exception {
                return "来源于数字流:" + value.toString();
            }

            @Override
            public String map2(String value) throws Exception {
                return "来源于字母流:" + value;
            }
        });

        result.print();

        env.execute();    }
}

上面的代码中,ConnectedStreams有两个类型参数,分别表示内部包含的两条流各自的数据类型;由于需要"一国两制",因此调用.map()方法时传入的不再是一个简单的MapFunction,而是一个CoMapFunction,表示分别对两条流中的数据执行map操作。这个接口有三个类型参数,依次表示第一条流、第二条流,以及合并后的流中的数据类型。需要实现的方法也非常直白:.map1()就是对第一条流中数据的map操作,.map2()则是针对第二条流

2)CoProcessFunction

与CoMapFunction类似,如果是调用.map()就需要传入一个CoMapFunction,需要实现map1()、map2()两个方法;而调用.process()时,传入的则是一个CoProcessFunction。它也是"处理函数"家族中的一员,用法非常相似。它需要实现的就是processElement1()、processElement2()两个方法,在每个数据到来时,会根据来源的流调用其中的一个方法进行处理。

值得一提的是,ConnectedStreams也可以直接调用.keyBy()进行按键分区的操作,得到的还是一个ConnectedStreams:

java 复制代码
connectedStreams.keyBy(keySelector1, keySelector2);

这里传入两个参数keySelector1和keySelector2,是两条流中各自的键选择器;当然也可以直接传入键的位置值(keyPosition),或者键的字段名(field),这与普通的keyBy用法完全一致。ConnectedStreams进行keyBy操作,其实就是把两条流中key相同的数据放到了一起,然后针对来源的流再做各自处理,这在一些场景下非常有用。
案例需求:连接两条流,输出能根据id匹配上的数据(类似inner join效果)

java 复制代码
public class ConnectKeybyDemo {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(2);

        DataStreamSource<Tuple2<Integer, String>> source1 = env.fromElements(
                Tuple2.of(1, "a1"),
                Tuple2.of(1, "a2"),
                Tuple2.of(2, "b"),
                Tuple2.of(3, "c")
        );
        DataStreamSource<Tuple3<Integer, String, Integer>> source2 = env.fromElements(
                Tuple3.of(1, "aa1", 1),
                Tuple3.of(1, "aa2", 2),
                Tuple3.of(2, "bb", 1),
                Tuple3.of(3, "cc", 1)
        );

        ConnectedStreams<Tuple2<Integer, String>, Tuple3<Integer, String, Integer>> connect = source1.connect(source2);

        // 多并行度下,需要根据 关联条件 进行keyby,才能保证key相同的数据到一起去,才能匹配上
        ConnectedStreams<Tuple2<Integer, String>, Tuple3<Integer, String, Integer>> connectKey = connect.keyBy(s1 -> s1.f0, s2 -> s2.f0);

        SingleOutputStreamOperator<String> result = connectKey.process(
                new CoProcessFunction<Tuple2<Integer, String>, Tuple3<Integer, String, Integer>, String>() {
                    // 定义 HashMap,缓存来过的数据,key=id,value=list<数据>
                    Map<Integer, List<Tuple2<Integer, String>>> s1Cache = new HashMap<>();
                    Map<Integer, List<Tuple3<Integer, String, Integer>>> s2Cache = new HashMap<>();

                    @Override
                    public void processElement1(Tuple2<Integer, String> value, Context ctx, Collector<String> out) throws Exception {
                        Integer id = value.f0;
                        // TODO 1.来过的s1数据,都存起来
                        if (!s1Cache.containsKey(id)) {
                            // 1.1 第一条数据,初始化 value的list,放入 hashmap
                            List<Tuple2<Integer, String>> s1Values = new ArrayList<>();
                            s1Values.add(value);
                            s1Cache.put(id, s1Values);
                        } else {
                            // 1.2 不是第一条,直接添加到 list中
                            s1Cache.get(id).add(value);
                        }

                        //TODO 2.根据id,查找s2的数据,只输出 匹配上 的数据
                        if (s2Cache.containsKey(id)) {
                            for (Tuple3<Integer, String, Integer> s2Element : s2Cache.get(id)) {
                                out.collect("s1:" + value + "<--------->s2:" + s2Element);
                            }
                        }
                    }

                    @Override
                    public void processElement2(Tuple3<Integer, String, Integer> value, Context ctx, Collector<String> out) throws Exception {
                        Integer id = value.f0;
                        // TODO 1.来过的s2数据,都存起来
                        if (!s2Cache.containsKey(id)) {
                            // 1.1 第一条数据,初始化 value的list,放入 hashmap
                            List<Tuple3<Integer, String, Integer>> s2Values = new ArrayList<>();
                            s2Values.add(value);
                            s2Cache.put(id, s2Values);
                        } else {
                            // 1.2 不是第一条,直接添加到 list中
                            s2Cache.get(id).add(value);
                        }

                        //TODO 2.根据id,查找s1的数据,只输出 匹配上 的数据
                        if (s1Cache.containsKey(id)) {
                            for (Tuple2<Integer, String> s1Element : s1Cache.get(id)) {
                                out.collect("s1:" + s1Element + "<--------->s2:" + value);
                            }
                        }
                    }
                });

        result.print();

        env.execute();
    }
}

4. 输出算子(Sink)

Flink作为数据处理框架,最终还是要把计算处理的结果写入外部存储,为外部应用提供支持。

4.1 连接到外部系统

Flink的DataStream API专门提供了向外部写入数据的方法:addSink。与addSource类似,addSink方法对应着一个"Sink"算子,主要就是用来实现与外部系统连接、并将数据提交写入的;Flink程序中所有对外的输出操作,一般都是利用Sink算子完成的。

Flink1.12以前,Sink算子的创建是通过调用DataStream的.addSink()方法实现的。

java 复制代码
stream.addSink(new SinkFunction(...));

addSink方法同样需要传入一个参数,实现的是SinkFunction接口。在这个接口中只需要重写一个方法invoke(),用来将指定的值写入到外部系统中。这个方法在每条数据记录到来时都会调用。

Flink1.12开始,同样重构了Sink架构,

java 复制代码
stream.sinkTo(...)

当然,Sink多数情况下同样并不需要我们自己实现。之前我们一直在使用的print方法其实就是一种Sink,它表示将数据流写入标准控制台打印输出。Flink官方为我们提供了一部分的框架的Sink连接器。如下图所示,列出了Flink官方目前支持的第三方系统连接器:

我们可以看到,像Kafka之类流式系统,Flink提供了完美对接,source/sink两端都能连接,可读可写;而对于Elasticsearch、JDBC等数据存储系统,则只提供了输出写入的sink连接器。

除Flink官方之外,Apache Bahir框架,也实现了一些其他第三方系统与Flink的连接器。

除此以外,就需要用户自定义实现sink连接器了。

4.2 输出到文件

Flink专门提供了一个流式文件系统的连接器:FileSink,为批处理和流处理提供了一个统一的Sink,它可以将分区文件写入Flink支持的文件系统。

FileSink支持行编码(Row-encoded)和批量编码(Bulk-encoded)格式。这两种不同的方式都有各自的构建器(builder),可以直接调用FileSink的静态方法:

  • 行编码: FileSink.forRowFormat(basePath,rowEncoder)。
  • 批量编码: FileSink.forBulkFormat(basePath,bulkWriterFactory)。

示例:

java 复制代码
public class SinkFile {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 每个目录中,都有 并行度个数的 文件在写入
        env.setParallelism(2);

        // 必须开启checkpoint,否则一直都是 .inprogress
        env.enableCheckpointing(2000, CheckpointingMode.EXACTLY_ONCE);


        DataGeneratorSource<String> dataGeneratorSource = new DataGeneratorSource<>(
                new GeneratorFunction<Long, String>() {
                    @Override
                    public String map(Long value) throws Exception {
                        return "Number:" + value;
                    }
                },
                Long.MAX_VALUE,
                RateLimiterStrategy.perSecond(1000),
                Types.STRING
        );

        DataStreamSource<String> dataGen = env.fromSource(dataGeneratorSource, WatermarkStrategy.noWatermarks(), "data-generator");

        // 输出到文件系统
        FileSink<String> fieSink = FileSink
                // 输出行式存储的文件,指定路径、指定编码
                .<String>forRowFormat(new Path("f:/tmp"), new SimpleStringEncoder<>("UTF-8"))
                // 输出文件的一些配置: 文件名的前缀、后缀
                .withOutputFileConfig(
                        OutputFileConfig.builder()
                                .withPartPrefix("atguigu-")
                                .withPartSuffix(".log")
                                .build()
                )
                // 按照目录分桶:如下,就是每个小时一个目录
                .withBucketAssigner(new DateTimeBucketAssigner<>("yyyy-MM-dd HH", ZoneId.systemDefault()))
                // 文件滚动策略:  1分钟 或 1m
                .withRollingPolicy(
                        DefaultRollingPolicy.builder()
                                .withRolloverInterval(Duration.ofMinutes(1))
                                .withMaxPartSize(new MemorySize(1024*1024))
                                .build()
                )
                .build();


        dataGen.sinkTo(fieSink);

        env.execute();
    }
}

4.3 输出到Kafka

(1)添加Kafka 连接器依赖

由于我们已经测试过从Kafka数据源读取数据,连接器相关依赖已经引入,这里就不重复介绍了。

(2)启动Kafka集群

(3)编写输出到Kafka的示例代码

输出无key的record:

java 复制代码
public class SinkKafka {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        // 如果是精准一次,必须开启checkpoint(后续章节介绍)
        env.enableCheckpointing(2000, CheckpointingMode.EXACTLY_ONCE);


        SingleOutputStreamOperator<String> sensorDS = env
                .socketTextStream("hadoop102", 7777);

        /**
         * Kafka Sink:
         * TODO 注意:如果要使用 精准一次 写入Kafka,需要满足以下条件,缺一不可
         * 1、开启checkpoint(后续介绍)
         * 2、设置事务前缀
         * 3、设置事务超时时间:   checkpoint间隔 <  事务超时时间  < max的15分钟
         */
        KafkaSink<String> kafkaSink = KafkaSink.<String>builder()
                // 指定 kafka 的地址和端口
                .setBootstrapServers("hadoop102:9092,hadoop103:9092,hadoop104:9092")
                // 指定序列化器:指定Topic名称、具体的序列化
                .setRecordSerializer(
                        KafkaRecordSerializationSchema.<String>builder()
                                .setTopic("ws")
                                .setValueSerializationSchema(new SimpleStringSchema())
                                .build()
                )
                // 写到kafka的一致性级别: 精准一次、至少一次
                .setDeliveryGuarantee(DeliveryGuarantee.EXACTLY_ONCE)
                // 如果是精准一次,必须设置 事务的前缀
                .setTransactionalIdPrefix("atguigu-")
                // 如果是精准一次,必须设置 事务超时时间: 大于checkpoint间隔,小于 max 15分钟
                .setProperty(ProducerConfig.TRANSACTION_TIMEOUT_CONFIG, 10*60*1000+"")
                .build();


        sensorDS.sinkTo(kafkaSink);


        env.execute();
    }
}

自定义序列化器,实现带key的record:

java 复制代码
public class SinkKafkaWithKey {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        env.enableCheckpointing(2000, CheckpointingMode.EXACTLY_ONCE);
        env.setRestartStrategy(RestartStrategies.noRestart());


        SingleOutputStreamOperator<String> sensorDS = env
                .socketTextStream("hadoop102", 7777);


        /**
         * 如果要指定写入kafka的key,可以自定义序列化器:
         * 1、实现 一个接口,重写 序列化 方法
         * 2、指定key,转成 字节数组
         * 3、指定value,转成 字节数组
         * 4、返回一个 ProducerRecord对象,把key、value放进去
         */
        KafkaSink<String> kafkaSink = KafkaSink.<String>builder()
                .setBootstrapServers("hadoop102:9092,hadoop103:9092,hadoop104:9092")
                .setRecordSerializer(
                        new KafkaRecordSerializationSchema<String>() {

                            @Nullable
                            @Override
                            public ProducerRecord<byte[], byte[]> serialize(String element, KafkaSinkContext context, Long timestamp) {
                                String[] datas = element.split(",");
                                byte[] key = datas[0].getBytes(StandardCharsets.UTF_8);
                                byte[] value = element.getBytes(StandardCharsets.UTF_8);
                                return new ProducerRecord<>("ws", key, value);
                            }
                        }
                )
                .setDeliveryGuarantee(DeliveryGuarantee.EXACTLY_ONCE)
                .setTransactionalIdPrefix("atguigu-")
                .setProperty(ProducerConfig.TRANSACTION_TIMEOUT_CONFIG, 10 * 60 * 1000 + "")
                .build();


        sensorDS.sinkTo(kafkaSink);


        env.execute();
    }
}

(4)运行代码,在Linux主机启动一个消费者,查看是否收到数据

shell 复制代码
[atguigu@hadoop102 ~]$ 
bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic ws

4.4 输出到MySQL(JDBC)

写入数据的MySQL的测试步骤如下。

(1)添加依赖

添加MySQL驱动:

java 复制代码
<dependency>
    <groupId>mysql</groupId>
    <artifactId>mysql-connector-java</artifactId>
    <version>8.0.27</version>
</dependency>

官方还未提供flink-connector-jdbc的1.17.0的正式依赖,暂时从apache snapshot仓库下载,pom文件中指定仓库路径:

java 复制代码
<repositories>
    <repository>
        <id>apache-snapshots</id>
        <name>apache snapshots</name>
<url>https://repository.apache.org/content/repositories/snapshots/</url>
    </repository>
</repositories>

添加依赖:

java 复制代码
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-jdbc</artifactId>
    <version>1.17-SNAPSHOT</version>
</dependency>

如果不生效,还需要修改本地maven的配置文件,mirrorOf中添加如下标红内容:

java 复制代码
		<mirror>
            <id>aliyunmaven</id>
            <mirrorOf>*,!apache-snapshots</mirrorOf>
            <name>阿里云公共仓库</name>
            <url>https://maven.aliyun.com/repository/public</url>
       </mirror>

(2)启动MySQL,在test库下建表ws

shell 复制代码
mysql>     
CREATE TABLE `ws` (
  `id` varchar(100) NOT NULL,
  `ts` bigint(20) DEFAULT NULL,
  `vc` int(11) DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8

(3)编写输出到MySQL的示例代码

java 复制代码
public class SinkMySQL {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);


        SingleOutputStreamOperator<WaterSensor> sensorDS = env
                .socketTextStream("hadoop102", 7777)
                .map(new WaterSensorMapFunction());


        /**
         * TODO 写入mysql
         * 1、只能用老的sink写法: addsink
         * 2、JDBCSink的4个参数:
         *    第一个参数: 执行的sql,一般就是 insert into
         *    第二个参数: 预编译sql, 对占位符填充值
         *    第三个参数: 执行选项 ---》 攒批、重试
         *    第四个参数: 连接选项 ---》 url、用户名、密码
         */
        SinkFunction<WaterSensor> jdbcSink = JdbcSink.sink(
                "insert into ws values(?,?,?)",
                new JdbcStatementBuilder<WaterSensor>() {
                    @Override
                    public void accept(PreparedStatement preparedStatement, WaterSensor waterSensor) throws SQLException {
                        //每收到一条WaterSensor,如何去填充占位符
                        preparedStatement.setString(1, waterSensor.getId());
                        preparedStatement.setLong(2, waterSensor.getTs());
                        preparedStatement.setInt(3, waterSensor.getVc());
                    }
                },
                JdbcExecutionOptions.builder()
                        .withMaxRetries(3) // 重试次数
                        .withBatchSize(100) // 批次的大小:条数
                        .withBatchIntervalMs(3000) // 批次的时间
                        .build(),
                new JdbcConnectionOptions.JdbcConnectionOptionsBuilder()
                        .withUrl("jdbc:mysql://hadoop102:3306/test?serverTimezone=Asia/Shanghai&useUnicode=true&characterEncoding=UTF-8")
                        .withUsername("root")
                        .withPassword("000000")
                        .withConnectionCheckTimeoutSeconds(60) // 重试的超时时间
                        .build()
        );


        sensorDS.addSink(jdbcSink);


        env.execute();
    }
}

(4)运行代码,用客户端连接MySQL,查看是否成功写入数据。

4.5 自定义Sink输出

如果我们想将数据存储到我们自己的存储设备中,而Flink并没有提供可以直接使用的连接器,就只能自定义Sink进行输出了。与Source类似,Flink为我们提供了通用的SinkFunction接口和对应的RichSinkDunction抽象类,只要实现它,通过简单地调用DataStream的.addSink()方法就可以自定义写入任何外部存储。

java 复制代码
stream.addSink(new MySinkFunction<String>());

在实现SinkFunction的时候,需要重写的一个关键方法invoke(),在这个方法中我们就可以实现将流里的数据发送出去的逻辑。

这种方式比较通用,对于任何外部存储系统都有效;不过自定义Sink想要实现状态一致性并不容易,所以一般只在没有其它选择时使用。实际项目中用到的外部连接器Flink官方基本都已实现,而且在不断地扩充,因此自定义的场景并不常见。

相关推荐
love静思冥想3 分钟前
Apache Commons ThreadUtils 的使用与优化
java·线程池优化
君败红颜5 分钟前
Apache Commons Pool2—Java对象池的利器
java·开发语言·apache
意疏13 分钟前
JDK动态代理、Cglib动态代理及Spring AOP
java·开发语言·spring
小王努力学编程15 分钟前
【C++篇】AVL树的实现
java·开发语言·c++
找了一圈尾巴26 分钟前
Wend看源码-Java-集合学习(List)
java·学习
逊嘘1 小时前
【Java数据结构】链表相关的算法
java·数据结构·链表
爱编程的小新☆1 小时前
不良人系列-复兴数据结构(二叉树)
java·数据结构·学习·二叉树
m0_748247801 小时前
SpringBoot集成Flowable
java·spring boot·后端
小娄写码1 小时前
线程池原理
java·开发语言·jvm
陌上花开࿈6 小时前
调用第三方接口
java