机器学习(二) -- 数据预处理

系列文章目录

未完待续......


目录

系列文章目录

前言

一、数值分析简介

二、内容


前言

tips:这里只是总结,不是教程哈。

此处以下所有内容均为暂定,因为我还没找到一个好的,让小白(我自己)也能容易理解(更系统、嗯应该是宏观)的讲解顺序与方式。

第一文主要简述了一下机器学习大致有哪些东西(当然远远不止这些),对大体框架有了一定了解。接着我们根据机器学习的流程一步步来学习吧,掐掉其他不太用得上我们的步骤,精练起来就4步(数据预处理,特征工程,训练模型,模型评估),其中训练模型则是我们的重头戏,基本上所有算法也都是这一步,so,这个最后写,先把其他三个讲了,然后,在结合这三步来进行算法的学习,兴许会好点(个人拙见)。


一、概述

还是先拿出咱们的老朋友,机器学习的流程图。

咱们这主要将数据预处理,而要进行机器学习首先需要数据,然后才能对数据进行预处理。

实际一点讲:数据清理、数据集成、数据变换、数据规约都是数据预处理的主要步骤,但是这四个没有严格意义上的先后顺序,在实际应用时并非全部会被使用(可能一个也不用,比如后面我们直接调用官方的iris包,但在实际自己获得的数据集中就会有各种各样的问题,视情况而定)

二、数据获取

获取数据途径多种多样,(括号内为废话:按理来讲,当今世界数据就是财富,一般而言别人的数据是不可能透露给你的,如果你和我一样还是个学生,可能可以从老师那里拿到数据),我们学习一般使用的是公开的数据集,如下为sklearn数据集

(iris为例)

python 复制代码
from sklearn.datasets import load_iris
data = load_iris()

这样就获取到一个数据集了,但是我们还不知道这个数据集的其他性质,所以

python 复制代码
print(data.DESCR)    # 

三、【数据清洗】

四、【数据集成】

获取数据途径多种多样

五、【数据变换】

获取数据途径多种多样

六、【数据归约】

获取数据途径多种多样

七、数据拆分

数据拆分:机器学习的数据集划分一般分为两个部分:

训练数据:用于训练,构建模型。一般占70%-80%(数据量越大,取得比例最好越大)

测试数据:用于模型评估,检验模型是否有效。一般占20%-30%

1、近似值

该处使用的url网络请求的数据。

2、内容

该处使用的url网络请求的数据。

3、思维方式

该处使用的url网络请求的数据。

4、根本课题

该处使用的url网络请求的数据。

1.1、嗡嗡嗡

嗡嗡嗡

1.2、十五万

嗡嗡嗡

相关推荐
恋猫de小郭1 小时前
你知道不,你现在给 AI 用的 Agent Skills 可能毫无作用,甚至还拖后腿?
前端·人工智能·ai编程
Zzz 小生1 小时前
LangChain models:模型使用完全指南
人工智能·深度学习·机器学习
大力财经1 小时前
京东“月黑风高”超级盛典开放预约
人工智能
programhelp_1 小时前
特斯拉 MLE 超详细面经 + 避坑
数据结构·人工智能·算法·面试·职场和发展
躺柒2 小时前
读人工智能全球格局:未来趋势与中国位势06人类的未来(下)
大数据·人工智能·算法·ai·智能
gorgeous(๑>؂<๑)2 小时前
【ICLR26-Oral Paper-Meta】DepthLM:基于视觉语言模型的度量深度
人工智能·计算机视觉·语言模型·自然语言处理
Dev7z2 小时前
当AI学会“听诊”:心肺听诊分析系统,正在悄悄改变医疗
人工智能
池央2 小时前
atvoss:AI 处理器上的智能语音与多媒体解决方案,赋能高效实时交互
人工智能·交互
码云数智-大飞2 小时前
小程序制作平台有哪些?SaaS小程序制作平台对比评测
大数据·人工智能
新缸中之脑3 小时前
Arduino AI手势识别系统
人工智能