机器学习(二) -- 数据预处理

系列文章目录

未完待续......


目录

系列文章目录

前言

一、数值分析简介

二、内容


前言

tips:这里只是总结,不是教程哈。

此处以下所有内容均为暂定,因为我还没找到一个好的,让小白(我自己)也能容易理解(更系统、嗯应该是宏观)的讲解顺序与方式。

第一文主要简述了一下机器学习大致有哪些东西(当然远远不止这些),对大体框架有了一定了解。接着我们根据机器学习的流程一步步来学习吧,掐掉其他不太用得上我们的步骤,精练起来就4步(数据预处理,特征工程,训练模型,模型评估),其中训练模型则是我们的重头戏,基本上所有算法也都是这一步,so,这个最后写,先把其他三个讲了,然后,在结合这三步来进行算法的学习,兴许会好点(个人拙见)。


一、概述

还是先拿出咱们的老朋友,机器学习的流程图。

咱们这主要将数据预处理,而要进行机器学习首先需要数据,然后才能对数据进行预处理。

实际一点讲:数据清理、数据集成、数据变换、数据规约都是数据预处理的主要步骤,但是这四个没有严格意义上的先后顺序,在实际应用时并非全部会被使用(可能一个也不用,比如后面我们直接调用官方的iris包,但在实际自己获得的数据集中就会有各种各样的问题,视情况而定)

二、数据获取

获取数据途径多种多样,(括号内为废话:按理来讲,当今世界数据就是财富,一般而言别人的数据是不可能透露给你的,如果你和我一样还是个学生,可能可以从老师那里拿到数据),我们学习一般使用的是公开的数据集,如下为sklearn数据集

(iris为例)

python 复制代码
from sklearn.datasets import load_iris
data = load_iris()

这样就获取到一个数据集了,但是我们还不知道这个数据集的其他性质,所以

python 复制代码
print(data.DESCR)    # 

三、【数据清洗】

四、【数据集成】

获取数据途径多种多样

五、【数据变换】

获取数据途径多种多样

六、【数据归约】

获取数据途径多种多样

七、数据拆分

数据拆分:机器学习的数据集划分一般分为两个部分:

训练数据:用于训练,构建模型。一般占70%-80%(数据量越大,取得比例最好越大)

测试数据:用于模型评估,检验模型是否有效。一般占20%-30%

1、近似值

该处使用的url网络请求的数据。

2、内容

该处使用的url网络请求的数据。

3、思维方式

该处使用的url网络请求的数据。

4、根本课题

该处使用的url网络请求的数据。

1.1、嗡嗡嗡

嗡嗡嗡

1.2、十五万

嗡嗡嗡

相关推荐
锋行天下34 分钟前
公司内网部署大模型的探索之路
前端·人工智能·后端
背心2块钱包邮2 小时前
第7节——积分技巧(Integration Techniques)-代换积分法
人工智能·python·深度学习·matplotlib
无心水2 小时前
【分布式利器:大厂技术】4、字节跳动高性能架构:Kitex+Hertz+BytePS,实时流与AI的极致优化
人工智能·分布式·架构·kitex·分布式利器·字节跳动分布式·byteps
阿正的梦工坊3 小时前
DreamGym:通过经验合成实现代理学习的可扩展化
人工智能·算法·大模型·llm
湘-枫叶情缘3 小时前
人脑生物芯片作为“数字修炼世界”终极载体的技术前景、伦理挑战与实现路径
人工智能
Aaron15883 小时前
侦察、测向、识别、干扰一体化平台系统技术实现
人工智能·fpga开发·硬件架构·边缘计算·信息与通信·射频工程·基带工程
维维180-3121-14553 小时前
作物模型的未来:DSSAT与机器学习、遥感及多尺度模拟的融合
人工智能·生态学·农业遥感·作物模型·地理学·农学
阿杰学AI4 小时前
AI核心知识38——大语言模型之Alignment(简洁且通俗易懂版)
人工智能·安全·ai·语言模型·aigc·ai对齐·alignment
xier_ran4 小时前
关键词解释:对比学习(Contrastive Learning)
人工智能·深度学习·学习·机器学习·对比学习
Jay20021114 小时前
【机器学习】27 异常检测(密度估计)
人工智能·机器学习