使用Python进行Yolo目标检测的带txt标签进行数据增强

yolov8导航

如果大家想要了解关于yolov8的其他任务和相关内容可以点击这个链接,我这边整理了许多其他任务的说明博文,后续也会持续更新,包括yolov8模型优化、sam等等的相关内容。

YOLOv8(附带各种任务详细说明链接)

源码下载地址:

Python实现Yolo目标检测全面数据增强脚本 - 提升模型性能和泛化能力

引言

在目标检测领域,数据增强是提高模型性能的关键步骤。本文介绍了一个专为Yolo目标检测模型设计的数据增强脚本。此脚本使用Python编写,利用PIL库和PyTorch来处理图像和标签数据。

数据增强的重要性

数据增强通过对训练数据应用一系列变换来增加数据的多样性,从而提高模型的泛化能力。这对于目标检测尤为重要,因为模型需要能够在各种条件下准确地识别和定位对象。

脚本概述

我们的脚本包含一个名为 DataAugmentationOnDetection 的类,它实现了多种数据增强技术,如缩放、翻转、裁剪和调整图像属性(亮度、对比度、饱和度)。此外,脚本还提供了一些辅助函数,用于加载图像、读取标签文件、显示处理后的图像,以及保存增强后的图像和标签。

主要方法和功能

  • 缩放(保持比例)resize_keep_ratioresizeDown_keep_ratio 方法可以缩放图像,同时保持其长宽比,适用于不同大小的图像。

  • 随机翻转random_flip_horizonrandom_flip_vertical 方法提供了图像的水平和垂直翻转功能,增加了样本的多样性。

  • 中心裁剪center_crop 方法对图像进行中心裁剪,生成更集中的图像区域,有助于模型关注目标区域。

  • 图像属性调整random_brightrandom_contrastrandom_saturation 方法调整图像的亮度、对比度和饱和度,提高模型对不同光照和颜色条件的适应性。

  • 添加噪声add_gasuss_noiseadd_salt_noiseadd_pepper_noise 方法通过添加不同类型的噪声,使模型能够更好地处理现实世界的不完美图像。

使用示例

使用这个脚本非常简单。首先,定义图像和标签的文件夹路径,然后调用 runAugumentation 函数处理所有图像。该函数会自动遍历图像文件夹,对每个图像应用多种数据增强方法,并将结果保存到指定目录。

效果展示

可以通过 plot_pics 函数展示数据增强前后的图像对比。这有助于直观地理解数据增强对图像的影响。

相关推荐
lxmyzzs2 小时前
基于深度学习CenterPoint的3D目标检测部署实战
人工智能·深度学习·目标检测·自动驾驶·ros·激光雷达·3d目标检测
爱分享的飘哥6 小时前
第八十三章:实战篇:文 → 图:Prompt 控制图像生成系统构建——从“咒语”到“神作”的炼成!
人工智能·计算机视觉·prompt·文生图·stablediffusion·diffusers·text-to-image
audyxiao0016 小时前
为了更强大的空间智能,如何将2D图像转换成完整、具有真实尺度和外观的3D场景?
人工智能·计算机视觉·3d·iccv·空间智能
范男9 小时前
基于Pytochvideo训练自己的的视频分类模型
人工智能·pytorch·python·深度学习·计算机视觉·3d·视频
顾道长生'15 小时前
(Arxiv-2025)SkyReels-A2:在视频扩散变换器中组合任意内容
人工智能·计算机视觉·音视频·多模态
CoovallyAIHub16 小时前
标注成本骤降,DINOv3炸裂发布!冻结 backbone 即拿即用,性能对标SOTA
深度学习·算法·计算机视觉
arron889917 小时前
YOLOv8n-pose 模型使用
人工智能·深度学习·yolo
飞翔的佩奇1 天前
【完整源码+数据集+部署教程】表盘指针检测系统源码和数据集:改进yolo11-CA-HSFPN
python·yolo·计算机视觉·数据集·yolo11·表盘指针检测
Coovally AI模型快速验证1 天前
农田扫描提速37%!基于检测置信度的无人机“智能抽查”路径规划,Coovally一键加速模型落地
深度学习·算法·yolo·计算机视觉·transformer·无人机
yzx9910131 天前
小程序开发APP
开发语言·人工智能·python·yolo