【递归 &回溯】LeetCode-301. 删除无效的括号

301. 删除无效的括号。

给你一个由若干括号和字母组成的字符串 s ,删除最小数量的无效括号,使得输入的字符串有效。

返回所有可能的结果。答案可以按 任意顺序 返回。

示例 1:

输入:s = "()())()"
输出:["(())()","()()()"]

示例 2:

输入:s = "(a)())()"
输出:["(a())()","(a)()()"]

示例 3:

输入:s = ")("
输出:[""]

提示:

1 <= s.length <= 25
s 由小写英文字母以及括号 '(' 和 ')' 组成
s 中至多含 20 个括号
算法分析

解题思路

满足有效括号序列的性质

  • 1、前缀序列中左括号的数量>=右括号的数量

  • 2、左括号的数量=右括号的数量
    DFS

    class Solution {
    List<String> res;

      public List<String> removeInvalidParentheses(String s) {
          res = new ArrayList<>();
          int l = 0;
          int r = 0;
          for (int i = 0; i < s.length(); i++) {
              if (s.charAt(i) == '(') {
                  l++;
              }
              if (s.charAt(i) == ')') {
                  if (l > 0) {
                      l--;
                  } else {
                      r++;
                  }
              }
          }
          dfs(s, 0, 0, l, r, "");
          return res;
      }
    
      public void dfs(String s, int u, int cnt, int l, int r, String path) {
          if (u == s.length()) {
              if (cnt == 0) {
                  res.add(path);
              }
              return;
          }
          if (s.charAt(u) != '(' && s.charAt(u) != ')') {
              dfs(s, u + 1, cnt, l, r, path + s.charAt(u));
          } else {
              if (s.charAt(u) == '(') {
                  int k = u;
                  while (k < s.length() && s.charAt(k) == '(') {
                      k++;
                  }
                  l -= k - u;
                  for (int i = k - u; i >= 0; i--) {
                      if (l >= 0) {
                          dfs(s, k, cnt, l, r, path);
                      }
                      path += '(';
                      l++;
                      cnt++;
                  }
              }
              if (s.charAt(u) == ')') {
                  int k = u;
                  while (k < s.length() && s.charAt(k) == ')') {
                      k++;
                  }
                  r -= k - u;
                  for (int i = k - u; i >= 0; i--) {
                      if (cnt >= 0 && r >= 0) {
                          dfs(s, k, cnt, l, r, path);
                      }
                      path += ')';
                      r++;
                      cnt--;
                  }
              }
          }
      }
    

    }

复杂性分析

时间复杂度:O(2^n * n)

空间复杂度:O(n)

相关推荐
Jasmine_llq14 分钟前
《 火星人 》
算法·青少年编程·c#
闻缺陷则喜何志丹25 分钟前
【C++动态规划 图论】3243. 新增道路查询后的最短距离 I|1567
c++·算法·动态规划·力扣·图论·最短路·路径
Lenyiin43 分钟前
01.02、判定是否互为字符重排
算法·leetcode
鸽鸽程序猿1 小时前
【算法】【优选算法】宽搜(BFS)中队列的使用
算法·宽度优先·队列
Jackey_Song_Odd1 小时前
C语言 单向链表反转问题
c语言·数据结构·算法·链表
Watermelo6171 小时前
详解js柯里化原理及用法,探究柯里化在Redux Selector 的场景模拟、构建复杂的数据流管道、优化深度嵌套函数中的精妙应用
开发语言·前端·javascript·算法·数据挖掘·数据分析·ecmascript
乐之者v1 小时前
leetCode43.字符串相乘
java·数据结构·算法
A懿轩A2 小时前
C/C++ 数据结构与算法【数组】 数组详细解析【日常学习,考研必备】带图+详细代码
c语言·数据结构·c++·学习·考研·算法·数组
古希腊掌管学习的神2 小时前
[搜广推]王树森推荐系统——矩阵补充&最近邻查找
python·算法·机器学习·矩阵