机器学习(三) -- 特征工程(更新中)

系列文章目录

未完待续......


目录

系列文章目录


前言

tips:这里只是总结,不是教程哈。

"***"开头的是给好奇心重的宝宝看的,其实不太重要可以跳过。

此处以下所有内容均为暂定,因为我还没找到一个好的,让小白(我自己)也能容易理解(更系统、嗯应该是宏观)的讲解顺序与方式。

第一文主要简述了一下机器学习大致有哪些东西(当然远远不止这些),对大体框架有了一定了解。接着我们根据机器学习的流程一步步来学习吧,掐掉其他不太用得上我们的步骤,精练起来就4步(数据预处理,特征工程,训练模型,模型评估),其中训练模型则是我们的重头戏,基本上所有算法也都是这一步,so,这个最后写,先把其他三个讲了,然后,在结合这三步来进行算法的学习,兴许会好点(个人拙见)。


一、特征工程简介

为什么需要特征工程?

数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。所以需要在特征上下功夫。

1、特征工程定义:

特征工程是使用一定技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。会直接影响机器学习的效果。

2、特征工程包含内容:

特征提取(特征抽取)、特征预处理、特征降维

二、特征提取

1、定义

将任意数据(如文本或图像)转换为可用于机器学习的数字特征。

2、字典特征提取

3、文本特征提取

三、特征预处理

1、定义

通过一些转换函数,将特征数据转换成更适合算法模型的特征数据的过程。

2、归一化

3、标准化

四、特征降维

1、定义

降维是指在某些限定条件下,降低随机变量(特征)个数,得到一组"不相关"主变量的过程

2、特征选择

3、主成分分析

1.1、嗡嗡嗡

嗡嗡嗡

1.2、十五万

嗡嗡嗡


总结

提示:这里对文章进行总结:

例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

相关推荐
EasyDSS12 分钟前
WebRTC技术下的EasyRTC音视频实时通话SDK,助力车载通信打造安全高效的智能出行体验
人工智能·音视频
jndingxin32 分钟前
OpenCV CUDA模块中逐元素操作------数学函数
人工智能·opencv·计算机视觉
暴龙胡乱写博客34 分钟前
机器学习 --- KNN算法
人工智能·算法·机器学习
极新1 小时前
极新携手火山引擎,共探AI时代生态共建的破局点与增长引擎
人工智能·火山引擎
是麟渊1 小时前
【大模型面试每日一题】Day 17:解释MoE(Mixture of Experts)架构如何实现模型稀疏性,并分析其训练难点
人工智能·自然语言处理·面试·职场和发展·架构
Poseidon、2 小时前
2025年5月AI科技领域周报(5.5-5.11):AGI研究进入关键验证期 具身智能开启物理世界交互新范式
人工智能·agi
编程有点难2 小时前
Python训练打卡Day22
开发语言·python·机器学习
天机️灵韵2 小时前
字节开源FlowGram与n8n 技术选型
人工智能·python·开源项目
jixunwulian2 小时前
AI边缘网关_5G/4G边缘计算网关厂家_计讯物联
人工智能·5g·边缘计算
boooo_hhh2 小时前
第28周——InceptionV1实现猴痘识别
python·深度学习·机器学习