DP进阶之路——01背包问题

题目链接:题目页面

小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。他需要带一些研究材料,但是他的行李箱空间有限。这些研究材料包括实验设备、文献资料和实验样本等等,它们各自占据不同的空间,并且具有不同的价值。

小明的行李空间为 N,问小明应该如何抉择,才能携带最大价值的研究材料,每种研究材料只能选择一次,并且只有选与不选两种选择,不能进行切割。
输入描述

第一行包含两个正整数,第一个整数 M 代表研究材料的

种类,第二个正整数 N,代表小明的行李空间。

第二行包含 M 个正整数,代表每种研究材料的所占空间。

第三行包含 M 个正整数,代表每种研究材料的价值。

输出描述

输出一个整数,代表小明能够携带的研究材料的最大价值。

输入示例

6 1
2 2 3 1 5 2
2 3 1 5 4 3

输出示例

5

提示信息

小明能够携带 6 种研究材料,但是行李空间只有 1,而占用空间为 1 的研究材料价值为 5,所以最终答案输出 5。

数据范围:

1 <= N <= 1000

1 <= M <= 1000

研究材料占用空间和价值都小于等于 1000

其实针对背包问题,做了几个题目后发现,都可以直接套用模板了,但是我们还是需要明白它是怎么实现的,不能一知半解。

我们需要明白的其实有:

1、dp[i]指的是什么?

2、dp数组初始值应该是哪些,为什么?

3、递归公式是怎样的,为什么是这样的?

4、weight数组是哪个,value数组是哪个?最大容量是多少?

具体思路:

这里简单画了一个图。

1、我们可以知道的是dp[i]是当为第i个物品的时候。

2、dp数组初始化要的是先把物品1的数组全部赋值

3、dp[i][j] = Math.max(dp[i-1][j], dp[i-1][j-weight[i]] + value[i])

就是当前j容量的时候,可以加入第i个物品时候的最大价值

这里是针对上面题目给出的代码:

import java.util.*;

public class Main {
    
    public static void main(String[] args) {
        // 背包容量 N
        // 物品种类 M
        Scanner sc = new Scanner(System.in);
        
        int M = sc.nextInt();
        int N = sc.nextInt();
        
        int[] values = new int[M];
        int[] weights = new int[M];
        
        for(int i = 0; i < M;i++) {
            weights[i] = sc.nextInt();
        }
        
        
        for(int i = 0; i < M;i++) {
            values[i] = sc.nextInt();
        }
        
        int[][] dp = new int[M][N+1];
        
        // 初始化
        for(int i = weights[0]; i <= N; i++) {
            dp[0][i] = values[0];
        }
        
        // 先物品
        for(int i = 1; i < M; i++) {
            // 后背包
            for(int j = 0; j <= N; j++) {
                if(weights[i] > j) {
                    dp[i][j] = dp[i-1][j];
                } else {
                    dp[i][j] = Math.max(dp[i-1][j],dp[i-1][j-weights[i]] + values[i]);
                }
            }
        }
        System.out.println(dp[M-1][N]);
    }
}
相关推荐
羊小猪~~1 分钟前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
软工菜鸡27 分钟前
预训练语言模型BERT——PaddleNLP中的预训练模型
大数据·人工智能·深度学习·算法·语言模型·自然语言处理·bert
南宫生29 分钟前
贪心算法习题其三【力扣】【算法学习day.20】
java·数据结构·学习·算法·leetcode·贪心算法
AI视觉网奇1 小时前
sklearn 安装使用笔记
人工智能·算法·sklearn
JingHongB1 小时前
代码随想录算法训练营Day55 | 图论理论基础、深度优先搜索理论基础、卡玛网 98.所有可达路径、797. 所有可能的路径、广度优先搜索理论基础
算法·深度优先·图论
weixin_432702261 小时前
代码随想录算法训练营第五十五天|图论理论基础
数据结构·python·算法·深度优先·图论
小冉在学习1 小时前
day52 图论章节刷题Part04(110.字符串接龙、105.有向图的完全可达性、106.岛屿的周长 )
算法·深度优先·图论
Repeat7151 小时前
图论基础--孤岛系列
算法·深度优先·广度优先·图论基础
小冉在学习1 小时前
day53 图论章节刷题Part05(并查集理论基础、寻找存在的路径)
java·算法·图论
武子康2 小时前
大数据-212 数据挖掘 机器学习理论 - 无监督学习算法 KMeans 基本原理 簇内误差平方和
大数据·人工智能·学习·算法·机器学习·数据挖掘