sheng的学习笔记-【中】【吴恩达课后测验】Course 4 -卷积神经网络 - 第四周测验

课程4_第4周_测验题

目录

第一题

1.面部验证只需要将新图片与1个人的面部进行比较,而面部识别则需要将新图片与K个人的面部进行比较。

A. 【  】正确

B. 【  】错误

答案:

A.【 √ 】正确

第二题

2.在人脸验证中函数d(img1,img2)起什么作用?

A. 【  】只需要给出一个人的图片就可以让网络认识这个人

B. 【  】为了解决一次学习的问题

C. 【  】这可以让我们使用softmax函数来学习预测一个人的身份,在这个单元中分类的数量等于数据库中的人的数量加1

D. 【  】鉴于我们拥有的照片很少,我们需要将它运用到迁移学习中

答案:

A.【 √ 】只需要给出一个人的图片就可以让网络认识这个人

B.【 √ 】为了解决一次学习的问题

第三题

3.为了训练人脸识别系统的参数,使用包含了10万个不同的人的10万张图片的数据集进行训练是合理的。

A. 【  】正确

B. 【  】错误

答案:

B.【 √ 】错误

第四题

4.下面哪个是三元组损失的正确定义(请把 α \alpha α也考虑进去)?

A. 【  】 m a x ( ∥ f ( A ) − f ( P ) ∥ 2 − ∥ f ( A ) − f ( N ) ∥ 2 + α , 0 ) max(\left \|f(A)−f(P)\right \|^2−\left \|f(A)−f(N)\right \|^2+\alpha,0) max(∥f(A)−f(P)∥2−∥f(A)−f(N)∥2+α,0)

B. 【  】 m a x ( ∥ f ( A ) − f ( N ) ∥ 2 − ∥ f ( A ) − f ( P ) ∥ 2 + α , 0 ) max(\left \|f(A)−f(N)\right \|^2−\left \|f(A)−f(P)\right \|^2+\alpha,0) max(∥f(A)−f(N)∥2−∥f(A)−f(P)∥2+α,0)

C. 【  】 m a x ( ∥ f ( A ) − f ( N ) ∥ 2 − ∥ f ( A ) − f ( P ) ∥ 2 − α , 0 ) max(\left \|f(A)−f(N)\right \|^2−\left \|f(A)−f(P)\right \|^2-\alpha,0) max(∥f(A)−f(N)∥2−∥f(A)−f(P)∥2−α,0)

D. 【  】 m a x ( ∥ f ( A ) − f ( P ) ∥ 2 − ∥ f ( A ) − f ( N ) ∥ 2 − α , 0 ) max(\left \|f(A)−f(P)\right \|^2−\left \|f(A)−f(N)\right \|^2-\alpha,0) max(∥f(A)−f(P)∥2−∥f(A)−f(N)∥2−α,0)

答案:

A.【 √ 】 m a x ( ∥ f ( A ) − f ( P ) ∥ 2 − ∥ f ( A ) − f ( N ) ∥ 2 + α , 0 ) max(\left \|f(A)−f(P)\right \|^2−\left \|f(A)−f(N)\right \|^2+\alpha,0) max(∥f(A)−f(P)∥2−∥f(A)−f(N)∥2+α,0)

第五题

5.在下图中的孪生卷积网络(Siamese network)结构图中,上下两个神经网络拥有不同的输入图像,但是其中的网络参数是完全相同的。

A. 【  】正确

B. 【  】错误

答案:

A.【 √ 】正确

第六题

6.你在一个拥有100种不同的分类的数据集上训练一个卷积神经网络,你想要知道是否能够找到一个对猫的图片很敏感的隐藏节点(即在能够强烈激活该节点的图像大多数都是猫的图片的节点),你更有可能在第4层找到该节点而不是在第1层更有可能找到。

A. 【  】正确

B. 【  】错误

答案:

A.【 √ 】正确

第七题

7.神经风格转换被训练为有监督的学习任务,其中的目标是输入两个图像 (x),并训练一个能够输出一个新的合成图像(y)的网络。

A. 【  】正确

B. 【  】错误

答案:

B.【 √ 】错误

第八题

8.在一个卷积网络的深层,每个通道对应一个不同的特征检测器,风格矩阵 G [ l ] G^{[l]} G[l]度量了l层中不同的特征探测器的激活(或相关)程度。

A. 【  】正确

B. 【  】错误

答案:

A.【 √ 】正确

第九题

9.在神经风格转换中,在优化算法的每次迭代中更新的是什么?

A. 【  】神经网络的参数

B. 【  】生成图像G的像素值

C. 【  】正则化参数

D. 【  】内容图像C的像素值

答案:

B.【 √ 】生成图像G的像素值

第十题

10.你现在用拥有的是3D的数据,现在构建一个网络层,其输入的卷积是32×32×32×1632×32×32×16(此卷积有16个通道),对其使用3232个3×3×33×3×3的过滤器(无填充,步长为1)进行卷积操作,请问输出的卷积是多少?

A. 【  】30×30×30×32

B. 【  】不能操作,因为指定的维度不匹配,所以这个卷积步骤是不可能执行的

C. 【  】30×30×30×16

答案:

A.【 √ 】30×30×30×32

相关推荐
Pyeako10 小时前
深度学习--卷积神经网络(下)
人工智能·python·深度学习·卷积神经网络·数据增强·保存最优模型·数据预处理dataset
风指引着方向10 小时前
动态形状算子支持:CANN ops-nn 的灵活推理方案
人工智能·深度学习·神经网络
魔乐社区10 小时前
MindSpeed LLM适配Qwen3-Coder-Next并上线魔乐社区,训练推理教程请查收
人工智能·深度学习·机器学习
ccLianLian11 小时前
计算机基础·cs336·损失函数,优化器,调度器,数据处理和模型加载保存
人工智能·深度学习·计算机视觉·transformer
爱吃泡芙的小白白11 小时前
深入解析CNN中的BN层:从稳定训练到前沿演进
人工智能·神经网络·cnn·梯度爆炸·bn·稳定模型
聆风吟º11 小时前
CANN runtime 性能优化:异构计算下运行时组件的效率提升与资源利用策略
人工智能·深度学习·神经网络·cann
一山秋叶11 小时前
带分数正则的一致性蒸馏
人工智能·深度学习
Aspect of twilight11 小时前
Mind-Cube介绍
人工智能·深度学习
芷栀夏11 小时前
CANN ops-math:从矩阵运算到数值计算的全维度硬件适配与效率提升实践
人工智能·神经网络·线性代数·矩阵·cann
肾透侧视攻城狮11 小时前
《Transformer模型PyTorch实现全攻略:架构拆解、代码示例与优化技巧》
深度学习·transformer·构建transformer模型·定义多头注意力模块·定义位置前馈网络·构建解/编码器模块·训练transformer模型