PyTorch训练多任务模型技巧

一、解决在分布式训练中,如果对同一模型进行多次调用的报错

报错如下:

RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.FloatTensor [256)] is at version 4; expected version 3 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).

参考知乎文章《【PyTorch踩坑】一个排查了一下午的坑

经过一些调试发现,只有当某些特定情况下才会触发此报错。下面结合一个对比学习的例子(并不是完整的脚本)来简单描述:

python 复制代码
import torch
import torch.nn as nn

from torchvision.models import resnet50

def main():
    model = resnet50(num_classes=256).cuda()
    model = nn.parallel.DistributedDataParallel(model, 
                                                device_ids=[args.local_rank], 
                                                find_unused_parameters=True)
    criterion = nn.MSELoss()
    
    optimizer = torch.optim.SGD(model.parameters(),
                                lr=0.001,
                                momentum=0.99,
                                weight_decay=1e-4)

    for i in range(10):
        input0 = torch.randn((4, 3, 224, 224), dtype=torch.float32).cuda()
        input2 = torch.randn((4, 3, 224, 224), dtype=torch.float32).cuda()

        out1 = model(input0)
        out2 = model(input1)

        loss = criterion(out1, out2)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

if __name__ == '__main__':
    main()

经过调试发现,当使用nn.DataParallel并行训练或者单卡训练均可正常运行;另外如果将两次模型调用集成到model中,即通过out1, out2 = model(input0, input1) 的方式在分布式训练下也不会报错。

由此可以猜测:在分布式训练中,如果对同一模型进行多次调用则会触发以上报错,即nn.parallel.DistributedDataParallel方法封装的模型,forword()函数和backward()函数必须交替执行,如果执行多个(次)forward()然后执行一次backward()则会报错。

那么解决此问题的入手点则可以聚焦到nn.parallel.DistributedDataParallel接口上。 通过查询PyTorch官方文档发现此接口下的两个参数:

复制代码
- find_unused_parameters: 如果模型的输出有不需要进行反向传播的,此参数需要设置为True;若你的代码运行后卡住不动,基本上就是该参数的问题。
- broadcast_buffers: 该参数默认为True,设置为True时,在模型执行forward之前,gpu0会把buffer中的参数值全部覆盖到别的gpu上。

问题基本可以定位出来了,即broadcast_buffers=True导致参数被覆盖修改。解决办法:

复制代码
 model = nn.parallel.DistributedDataParallel(model, 
                                             device_ids=[args.local_rank], 
                                             broadcast_buffers=False,
                                             find_unused_parameters=True)

参考

distributed: https://pytorch.org/docs/stable/distributed.html

Inplace error if DistributedDataParallel module that contains a buffer is called twice

相关推荐
棒棒的皮皮4 分钟前
【深度学习】YOLO 模型部署全攻略(本地 / 嵌入式 / 移动端)
人工智能·深度学习·yolo·计算机视觉
棒棒的皮皮41 分钟前
【深度学习】YOLO模型速度优化全攻略(模型 / 推理 / 硬件三层维度)
人工智能·深度学习·yolo·计算机视觉
koo3642 小时前
pytorch深度学习笔记12
pytorch·笔记·深度学习
Yeats_Liao3 小时前
MindSpore开发之路(二十五):融入开源:如何为MindSpore社区贡献力量
人工智能·分布式·深度学习·机器学习·华为·开源
Blossom.1184 小时前
Transformer架构优化实战:从MHA到MQA/GQA的显存革命
人工智能·python·深度学习·react.js·架构·aigc·transformer
小明_GLC4 小时前
Falcon-TST: A Large-Scale Time Series Foundation Model
论文阅读·人工智能·深度学习·transformer
棒棒的皮皮4 小时前
【深度学习】YOLO模型精度优化 Checklist
人工智能·深度学习·yolo·计算机视觉
微尘hjx4 小时前
【数据集 01】家庭室内烟火数据集(按比例划分训练、验证、测试)包含训练好的yolo11/yolov8模型
深度学习·yolov8·yolo11·训练模型·烟火数据集·家庭火灾数据集·火灾数据集
高洁014 小时前
CLIP 的双编码器架构是如何优化图文关联的?(2)
python·深度学习·机器学习·知识图谱
koo3645 小时前
pytorch深度学习笔记9
pytorch·笔记·深度学习