PyTorch训练多任务模型技巧

一、解决在分布式训练中,如果对同一模型进行多次调用的报错

报错如下:

RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.FloatTensor [256)] is at version 4; expected version 3 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).

参考知乎文章《【PyTorch踩坑】一个排查了一下午的坑

经过一些调试发现,只有当某些特定情况下才会触发此报错。下面结合一个对比学习的例子(并不是完整的脚本)来简单描述:

python 复制代码
import torch
import torch.nn as nn

from torchvision.models import resnet50

def main():
    model = resnet50(num_classes=256).cuda()
    model = nn.parallel.DistributedDataParallel(model, 
                                                device_ids=[args.local_rank], 
                                                find_unused_parameters=True)
    criterion = nn.MSELoss()
    
    optimizer = torch.optim.SGD(model.parameters(),
                                lr=0.001,
                                momentum=0.99,
                                weight_decay=1e-4)

    for i in range(10):
        input0 = torch.randn((4, 3, 224, 224), dtype=torch.float32).cuda()
        input2 = torch.randn((4, 3, 224, 224), dtype=torch.float32).cuda()

        out1 = model(input0)
        out2 = model(input1)

        loss = criterion(out1, out2)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

if __name__ == '__main__':
    main()

经过调试发现,当使用nn.DataParallel并行训练或者单卡训练均可正常运行;另外如果将两次模型调用集成到model中,即通过out1, out2 = model(input0, input1) 的方式在分布式训练下也不会报错。

由此可以猜测:在分布式训练中,如果对同一模型进行多次调用则会触发以上报错,即nn.parallel.DistributedDataParallel方法封装的模型,forword()函数和backward()函数必须交替执行,如果执行多个(次)forward()然后执行一次backward()则会报错。

那么解决此问题的入手点则可以聚焦到nn.parallel.DistributedDataParallel接口上。 通过查询PyTorch官方文档发现此接口下的两个参数:

复制代码
- find_unused_parameters: 如果模型的输出有不需要进行反向传播的,此参数需要设置为True;若你的代码运行后卡住不动,基本上就是该参数的问题。
- broadcast_buffers: 该参数默认为True,设置为True时,在模型执行forward之前,gpu0会把buffer中的参数值全部覆盖到别的gpu上。

问题基本可以定位出来了,即broadcast_buffers=True导致参数被覆盖修改。解决办法:

复制代码
 model = nn.parallel.DistributedDataParallel(model, 
                                             device_ids=[args.local_rank], 
                                             broadcast_buffers=False,
                                             find_unused_parameters=True)

参考

distributed: https://pytorch.org/docs/stable/distributed.html

Inplace error if DistributedDataParallel module that contains a buffer is called twice

相关推荐
惯导马工1 天前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
隐语SecretFlow2 天前
国人自研开源隐私计算框架SecretFlow,深度拆解框架及使用【开发者必看】
深度学习
Billy_Zuo2 天前
人工智能深度学习——卷积神经网络(CNN)
人工智能·深度学习·cnn
羊羊小栈2 天前
基于「YOLO目标检测 + 多模态AI分析」的遥感影像目标检测分析系统(vue+flask+数据集+模型训练)
人工智能·深度学习·yolo·目标检测·毕业设计·大作业
l12345sy2 天前
Day24_【深度学习—广播机制】
人工智能·pytorch·深度学习·广播机制
九章云极AladdinEdu2 天前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
研梦非凡3 天前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
通街市密人有3 天前
IDF: Iterative Dynamic Filtering Networks for Generalizable Image Denoising
人工智能·深度学习·计算机视觉
智数研析社3 天前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
七元权3 天前
论文阅读-Correlate and Excite
论文阅读·深度学习·注意力机制·双目深度估计