PyTorch训练多任务模型技巧

一、解决在分布式训练中,如果对同一模型进行多次调用的报错

报错如下:

RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.FloatTensor [256)] is at version 4; expected version 3 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).

参考知乎文章《【PyTorch踩坑】一个排查了一下午的坑

经过一些调试发现,只有当某些特定情况下才会触发此报错。下面结合一个对比学习的例子(并不是完整的脚本)来简单描述:

python 复制代码
import torch
import torch.nn as nn

from torchvision.models import resnet50

def main():
    model = resnet50(num_classes=256).cuda()
    model = nn.parallel.DistributedDataParallel(model, 
                                                device_ids=[args.local_rank], 
                                                find_unused_parameters=True)
    criterion = nn.MSELoss()
    
    optimizer = torch.optim.SGD(model.parameters(),
                                lr=0.001,
                                momentum=0.99,
                                weight_decay=1e-4)

    for i in range(10):
        input0 = torch.randn((4, 3, 224, 224), dtype=torch.float32).cuda()
        input2 = torch.randn((4, 3, 224, 224), dtype=torch.float32).cuda()

        out1 = model(input0)
        out2 = model(input1)

        loss = criterion(out1, out2)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

if __name__ == '__main__':
    main()

经过调试发现,当使用nn.DataParallel并行训练或者单卡训练均可正常运行;另外如果将两次模型调用集成到model中,即通过out1, out2 = model(input0, input1) 的方式在分布式训练下也不会报错。

由此可以猜测:在分布式训练中,如果对同一模型进行多次调用则会触发以上报错,即nn.parallel.DistributedDataParallel方法封装的模型,forword()函数和backward()函数必须交替执行,如果执行多个(次)forward()然后执行一次backward()则会报错。

那么解决此问题的入手点则可以聚焦到nn.parallel.DistributedDataParallel接口上。 通过查询PyTorch官方文档发现此接口下的两个参数:

复制代码
- find_unused_parameters: 如果模型的输出有不需要进行反向传播的,此参数需要设置为True;若你的代码运行后卡住不动,基本上就是该参数的问题。
- broadcast_buffers: 该参数默认为True,设置为True时,在模型执行forward之前,gpu0会把buffer中的参数值全部覆盖到别的gpu上。

问题基本可以定位出来了,即broadcast_buffers=True导致参数被覆盖修改。解决办法:

复制代码
 model = nn.parallel.DistributedDataParallel(model, 
                                             device_ids=[args.local_rank], 
                                             broadcast_buffers=False,
                                             find_unused_parameters=True)

参考

distributed: https://pytorch.org/docs/stable/distributed.html

Inplace error if DistributedDataParallel module that contains a buffer is called twice

相关推荐
DeepModel2 小时前
第15章 多模态学习
深度学习·学习·机器学习
nudt_qxx2 小时前
讲透Transformer(三):Transformer 注意力机制详解与Qwen/DeepSeek近期改进
人工智能·深度学习·transformer
绒绒毛毛雨2 小时前
多目标强化学习-英伟达:GDPO
人工智能·深度学习·机器学习
技术宅学长3 小时前
什么是FFN层(Feed-Forward Network,前馈神经网络层)
人工智能·深度学习·神经网络
lanbo_ai3 小时前
基于yolov10的火焰、火灾检测系统,支持图像、视频和摄像实时检测【pytorch框架、python源码】
pytorch·python·yolo
Together_CZ4 小时前
ViT-5: Vision Transformers for The Mid-2020s—— 面向2020年代中期的视觉Transformer
人工智能·深度学习·ai·transformer·vit·vit-5·面向2020年代中期的视觉
skywalk81635 小时前
LTX-2 是一个基于 Transformer 的视频生成模型,能够根据文本描述生成高质量视频
python·深度学习·transformer
小雨中_5 小时前
3.7 GSPO:Group Sequence Policy Optimization(组序列策略优化)
人工智能·python·深度学习·机器学习·自然语言处理
何伯特6 小时前
深度学习中的三种偏移:协变量偏移、标签偏移与概念偏移
人工智能·深度学习
狮子座明仔7 小时前
SkillRL:让AI智能体学会“练功升级“的递归技能强化学习框架
人工智能·深度学习·自然语言处理