基于Python的B站排行榜大数据分析与可视化系统

温馨提示:文末有 CSDN 平台官方提供的学长 QQ 名片 :)

1. 项目简介

本文介绍了一项基于Python的B站排行榜大数据分析与可视化系统的研究。通过网络爬虫技术,系统能够自动分析B站网址,提取大量相关文本信息并存储在系统中。通过对这些信息进行统计分析,系统实现了B站排行榜热度的整体分析,热门版块的词云分析以及不同版块热度的详细分析。通过可视化的方式,用户可以清晰直观地了解B站各个排行榜的动态和热度趋势。本系统不仅提供了对B站内容的全面分析,还为用户提供了一种方便、直观的方式来探索和了解B站平台上的热门内容和趋势。

2. 排行榜数据网络爬虫

利用Python网络爬虫,采集排行榜数据:

python 复制代码
# 爬取所有类别的排行榜数据
for cate in rank_urls:
    print('抓取{}栏目的排名TOP100的作品'.format(cate))
    rank_url = rank_urls[cate]

    resp = requests.get(rank_url, headers=headers)
    resp.encoding = 'utf8'
    soup = BeautifulSoup(resp.text, 'lxml')
    rank_list = soup.find(name='ul', attrs={'class': 'rank-list'})
    lis = rank_list.find_all(name='li')

    for li in lis:
        rank = li['data-rank']

        # ..........

        # title
        title = li.find('a', attrs={'class': 'title'})
        title = title.text.strip()

        detail = li.find('div', attrs={'class': 'detail-state'})
        spans = detail.find_all('span', attrs={'class': 'data-box'})
        # 播放次数
        play_count = spans[0].text.strip()
        # 点赞次数
        like_count = spans[1].text.strip()

        # 数据清洗,亿为单位的,统一为"万"为单位
        # ..........

        item_info = {
            'cate': cate,
            'rank': rank,
            'title': title,
            'play_count': play_count,
            'like_count': like_count
        }
        print(json.dumps(item_info, ensure_ascii=False))
        all_item_info.append(item_info)

# 数据存储        
# ..........

3. B站排行榜大数据分析与可视化系统

3.1 首页与注册登陆

3.2 排行榜热度整体分析

3.2.1 不同版块播放热度分布情况

3.2.2 不同版块点赞热度分布情况

3.3 版块热门作品词云可视化

3.5 版块热门作品播放次数与点赞次数

4. 总结

基于Python的B站排行榜大数据分析与可视化系统通过网络爬虫技术,自动采集B站网址热门排行榜,提取大量相关文本信息并存储在系统中。通过对这些信息进行统计分析,系统实现了B站排行榜热度的整体分析,热门版块的词云分析以及不同版块热度的详细分析。通过可视化的方式,用户可以清晰直观地了解B站各个排行榜的动态和热度趋势。本系统不仅提供了对B站内容的全面分析,还为用户提供了一种方便、直观的方式来探索和了解B站平台上的热门内容和趋势。

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。技术交流、源码获取认准下方 CSDN 官方提供的学长 QQ 名片 :)

精彩专栏推荐订阅:

1. Python 毕设精品实战案例
2. 自然语言处理 NLP 精品实战案例
3. 计算机视觉 CV 精品实战案例

相关推荐
RisingWave中文开源社区1 小时前
一文详解物化视图(MV):定义、优势和用例
数据库·sql·数据分析
宝哥的菜鸟之路2 小时前
Python 数据分析概述 ①
开发语言·python·数据分析
艾思科蓝 AiScholar6 小时前
【SPIE出版,见刊快速,EI检索稳定,浙江水利水电学院主办】2025年物理学与量子计算国际学术会议(ICPQC 2025)
图像处理·人工智能·信息可视化·自然语言处理·数据分析·力扣·量子计算
万事可爱^16 小时前
HDBSCAN:密度自适应的层次聚类算法解析与实践
算法·机器学习·数据挖掘·聚类·hdbscan
白水先森21 小时前
如何使用ArcGIS Pro高效查找小区最近的地铁站
经验分享·arcgis·信息可视化·数据分析
yuanbenshidiaos1 天前
【数据挖掘】数据仓库
数据仓库·笔记·数据挖掘
lcw_lance1 天前
人工智能(AI)的不同维度分类
人工智能·分类·数据挖掘
伊一大数据&人工智能学习日志1 天前
自然语言处理NLP 04案例——苏宁易购优质评论与差评分析
人工智能·python·机器学习·自然语言处理·数据挖掘
huaqianzkh1 天前
理解构件的3种分类方法
人工智能·分类·数据挖掘
白水先森2 天前
ArcGIS Pro制作人口三维地图教程
arcgis·信息可视化·数据分析