每日一练:LeeCode-347. 前 K 个高频元素(中) - 【优先级队列】

本文是力扣LeeCode-347. 前 K 个高频元素 学习与理解过程,本文仅做学习之用,对本题感兴趣的小伙伴可以出门左拐LeeCode。

给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。
示例 1:

输入: nums = [1,1,1,2,2,3], k = 2

输出: [1,2]
示例 2:

输入: nums = [1], k = 1

输出: [1]
提示:

1 <= nums.length <= 105

k 的取值范围是 [1, 数组中不相同的元素的个数]

题目数据保证答案唯一,换句话说,数组中前 k 个高频元素的集合是唯一的
进阶:你所设计算法的时间复杂度 必须 优于 O(n log n) ,其中 n 是数组大小。
思路:

  • 统计元素出现的频率 ---------> 使⽤map来进⾏统计
  • 对元素的频率进行排序 ---------> 由于map的value频率排序完,没法再找到对应的key,所以应该使⽤⼀种 容器适配器 就是 优先级队列,针对这道题,使用优先级队列最优,快排也比不上。
  • 找出前K个⾼频元素 ---------> 相比大顶堆需要所有元素都排序一遍,使用小顶堆只排序k个元素,性能更优。 因为要统计最⼤前k个元素,只有⼩顶堆每次将最⼩的元素弹出,最后⼩顶堆⾥积累的才是前k个最⼤元素。
    优先级队列:优先级队列内部元素是⾃动依照元素的权值排列,优先级队列对外接⼝只是从队头取元素,从队尾添加元素,再⽆其他取元素的⽅式,看起来就是⼀个队列。默认使用大顶堆排序,若修改使用小顶堆排序,需要重写优先级队列的compare()方法。
java 复制代码
class Solution {
    public int[] topKFrequent(int[] nums, int k) {
        // 使用map字典,统计每个元素出现的次数,元素为键,元素出现的次数为值
        Map<Integer,Integer> map = new HashMap<>();
        for(int i=0;i<nums.length;i++){
            if(map.containsKey(nums[i])){
                map.put(nums[i],map.get(nums[i])+1);
            }else{
                map.put(nums[i],1);
            }
        }

        PriorityQueue<Integer> pq = new PriorityQueue<>(new Comparator<Integer>(){
            // @Override:不写leeCode也可通过
            public int compare(Integer a,Integer b){
                return map.get(a)-map.get(b);
            }
        });

        // 遍历map,用最小堆保存频率最大的k个元素
        for(Integer key : map.keySet()){
            // if(pq.size()<k){
            //     pq.add(key);
            // }else if(map.get(key)>map.get(pq.peek())){
            //     pq.remove();
            //     pq.add(key);
            // }
            pq.add(key);
            if(pq.size()>k){
                pq.remove();
            }
        }

         // 取出最小堆中的元素
        int[] res = new int[k];
        int j=0;
        while(!pq.isEmpty()){
            res[j++] = pq.remove();
        }
        return res;
    }
}

大家有更好的方法,请不吝赐教。

相关推荐
Neil今天也要学习2 分钟前
永磁同步电机无速度算法--基于相位超前校正的LESO
算法·1024程序员节
zl9798995 分钟前
SpringBoot-Web开发之数据响应
java·spring boot·后端
码农多耕地呗6 分钟前
力扣226.翻转二叉树(java)
算法·leetcode·职场和发展
旷野说13 分钟前
Spring Boot 1.x、2.x 3.x区别汇总
java·spring·tomcat·1024程序员节
没有bug.的程序员21 分钟前
Spring Boot 起步:自动装配的魔法
java·开发语言·spring boot·后端·spring·1024程序员节
Hero | 柒23 分钟前
设计模式之建造者模式
java·设计模式·1024程序员节
CodeLongBear27 分钟前
帝可得智能售货机系统实战Day1:从环境搭建到区域管理功能落地 (1)
java·1024程序员节·ai + 若依框架
235161 小时前
【MySQL】慢查寻的发现和解决优化(思维导图版)
java·后端·sql·mysql·职场和发展·数据库开发·数据库架构
面向星辰1 小时前
windows配置hadoop环境
java·开发语言
小超嵌入式笔记1 小时前
【Keil5教程及技巧】耗时一周精心整理万字全网最全Keil5(MDK-ARM)功能详细介绍【建议收藏-细细品尝】
java·数据库·mongodb