深度学习|2.2 逻辑回归

引入

如上图,给定x,x是指含有某一个特定事物的多个特征组成的向量, P ( y = 1 ∣ x ) P(y=1|x) P(y=1∣x)是指在x的情况下,y被判定为1的概率。

简言之,就是在知道多个特征的情况下,将某某东西猜成是某一个特定事物的概率。

线性回归的局限性

线性回归算出来的值并不是一个介于0到1的值,并不适合去作为一个概率来使用。

优化------sigmoid函数

将值回归到介于0和1之间的范围。

形式上的优化

将向量内积+常数的形式统一成向量内积的形式。

相关推荐
Hcoco_me几秒前
RNN(循环神经网络)
人工智能·rnn·深度学习
踏浪无痕8 分钟前
AI 时代架构师如何有效成长?
人工智能·后端·架构
AI 智能服务9 分钟前
第6课__本地工具调用(文件操作)
服务器·人工智能·windows·php
clorisqqq27 分钟前
人工智能现代方法笔记 第1章 绪论(1/2)
人工智能·笔记
kisshuan1239628 分钟前
YOLO11-RepHGNetV2实现甘蔗田杂草与作物区域识别详解
人工智能·计算机视觉·目标跟踪
焦耳热科技前沿34 分钟前
北京科技大学/理化所ACS Nano:混合价态Cu₂Sb金属间化合物实现高效尿素电合成
大数据·人工智能·自动化·能源·材料工程
C+-C资深大佬40 分钟前
Creo 11.0 全功能解析:多体设计 + 仿真制造,机械设计效率翻倍下载安装
人工智能
浔川python社1 小时前
【维护期间重要提醒】请勿使用浔川 AI 翻译 v6.0 翻译违规内容
人工智能
CS创新实验室1 小时前
AI 与编程
人工智能·编程·编程语言
min1811234561 小时前
深度伪造内容的检测与溯源技术
大数据·网络·人工智能