深度学习|2.2 逻辑回归

引入

如上图,给定x,x是指含有某一个特定事物的多个特征组成的向量, P ( y = 1 ∣ x ) P(y=1|x) P(y=1∣x)是指在x的情况下,y被判定为1的概率。

简言之,就是在知道多个特征的情况下,将某某东西猜成是某一个特定事物的概率。

线性回归的局限性

线性回归算出来的值并不是一个介于0到1的值,并不适合去作为一个概率来使用。

优化------sigmoid函数

将值回归到介于0和1之间的范围。

形式上的优化

将向量内积+常数的形式统一成向量内积的形式。

相关推荐
仙人掌_lz43 分钟前
Qwen-3 微调实战:用 Python 和 Unsloth 打造专属 AI 模型
人工智能·python·ai·lora·llm·微调·qwen3
m0_678693332 小时前
深度学习笔记26-天气预测(Tensorflow)
笔记·深度学习·tensorflow
美林数据Tempodata2 小时前
大模型驱动数据分析革新:美林数据智能问数解决方案破局传统 BI 痛点
数据库·人工智能·数据分析·大模型·智能问数
硅谷秋水2 小时前
NORA:一个用于具身任务的小型开源通才视觉-语言-动作模型
人工智能·深度学习·机器学习·计算机视觉·语言模型·机器人
正儿八经的数字经2 小时前
人工智能100问☞第46问:AI是如何“学习”的?
人工智能·学习
飞哥数智坊2 小时前
别卷提示词了!像带新人一样“带”AI,产出效率翻倍
人工智能
扫地的小何尚3 小时前
全新NVIDIA Llama Nemotron Nano视觉语言模型在OCR基准测试中准确率夺冠
c++·人工智能·语言模型·机器人·ocr·llama·gpu
xiaohanbao093 小时前
day54 python对抗生成网络
网络·python·深度学习·学习
m0_575470883 小时前
n8n实战:自动化生成AI日报并发布
人工智能·ai·自动化·ai自动写作