fmincon函数的决策变量可以是二维矩阵,但不建议是高维矩阵

1)二维矩阵代码

c 复制代码
clear all
clc

% 定义目标函数
fun = @(x) sum(sum(x.^2));

% 初始矩阵
x0 = 2 + rand(2, 2);

% 定义空的线性不等式约束
A = [];
b = [];

% 定义空的线性等式约束
Aeq = [];
beq = [];

% 定义变量的上下界
lb = ones(2,2);
ub = [];

% 使用 fmincon 求解
options = optimoptions('fmincon', 'Display', 'iter');
[x_opt, fval_opt] = fmincon(fun, x0, A, b, Aeq, beq, lb, ub, [], options);

% 显示最优解和最优值
disp('最优解:');
disp(x_opt);
disp('最优值:');
disp(fval_opt);

2)运行结果

由此可见,确实可计算得到最优解!.

3)高维矩阵代码(五维)

c 复制代码
clear all
clc

% 定义目标函数
fun = @(x) sum(sum(sum(sum(sum(x.^2)))));

% 初始矩阵(五维)
x0 = 2 + rand(2, 2, 2, 2, 2);

% 定义空的线性不等式约束
A = [];
b = [];

% 定义空的线性等式约束
Aeq = [];
beq = [];

% 定义变量的上下界
lb = ones(2, 2, 2, 2, 2);
ub = [];

% 使用 fmincon 求解
options = optimoptions('fmincon', 'Display', 'iter');
[x_opt, fval_opt] = fmincon(fun, x0, A, b, Aeq, beq, lb, ub, [], options);

% 显示最优解和最优值
disp('最优解:');
disp(x_opt);
disp('最优值:');
disp(fval_opt);

4)运行结果

此外,即使是凸优化问题,fmin仍可能会显示求得"Local minimum found that satisfies the constraints."

5)需要注意:非常不建议fmin中使用高维矩阵(三维及三维以上)

前述案例中的目标函数太简单,不具有泛化意义。因此,我更换了一组复杂一些的目标函数和约束条件,并应用在三维矩阵上,然后发现各种报错:

分析报错原因:第一轮迭代时,"决策变量"是初始的高维矩阵( 4 ∗ 3 ∗ 4 4*3*4 4∗3∗4维矩阵);但在第二轮迭代时,目标函数中的"决策变量"、以及非线性约束中的"决策变量",就全部变为二维矩阵了!(因为第一轮迭代的结果,会以二维矩阵的形式来存储!所以,在第二轮迭代时,决策变量又变成了 4 ∗ 12 4*12 4∗12维的二维矩阵!)

因此,建议fmin中的决策变量,最高维度只设为二维矩阵!!不建议设成高维矩阵!!

相关推荐
马上到我碗里来15 小时前
Simulink对仿真数据进行FFT频谱分析
matlab·simulink·fft
十七算法实验室15 小时前
Matlab实现麻雀优化算法优化随机森林算法模型 (SSA-RF)(附源码)
算法·决策树·随机森林·机器学习·支持向量机·matlab·启发式算法
记录无知岁月17 小时前
【MATLAB】目标检测初探
开发语言·yolo·目标检测·matlab·yolov3·yolov2
远望清一色17 小时前
基于MATLAB身份证号码识别
开发语言·图像处理·算法·matlab
大福是小强20 小时前
035_Progress_Dialog_in_Matlab中的进度条对话框
ui·matlab·进度条·界面开发·ux·用户界面
慕容复之巅20 小时前
基于MATLAB的条形码的识别图像处理报告
开发语言·图像处理·matlab
小喵要摸鱼1 天前
MATLAB 使用教程 —— 矩阵和数组
matlab·矩阵
金星娃儿1 天前
MATLAB基础知识笔记——(矩阵的运算)
笔记·matlab·矩阵
哈听星2 天前
解非线性方程组
数学建模·matlab
亚图跨际2 天前
MATLAB和R及Python伪时间分析
python·matlab·r语言·伪时间分析