fmincon函数的决策变量可以是二维矩阵,但不建议是高维矩阵

1)二维矩阵代码

c 复制代码
clear all
clc

% 定义目标函数
fun = @(x) sum(sum(x.^2));

% 初始矩阵
x0 = 2 + rand(2, 2);

% 定义空的线性不等式约束
A = [];
b = [];

% 定义空的线性等式约束
Aeq = [];
beq = [];

% 定义变量的上下界
lb = ones(2,2);
ub = [];

% 使用 fmincon 求解
options = optimoptions('fmincon', 'Display', 'iter');
[x_opt, fval_opt] = fmincon(fun, x0, A, b, Aeq, beq, lb, ub, [], options);

% 显示最优解和最优值
disp('最优解:');
disp(x_opt);
disp('最优值:');
disp(fval_opt);

2)运行结果

由此可见,确实可计算得到最优解!.

3)高维矩阵代码(五维)

c 复制代码
clear all
clc

% 定义目标函数
fun = @(x) sum(sum(sum(sum(sum(x.^2)))));

% 初始矩阵(五维)
x0 = 2 + rand(2, 2, 2, 2, 2);

% 定义空的线性不等式约束
A = [];
b = [];

% 定义空的线性等式约束
Aeq = [];
beq = [];

% 定义变量的上下界
lb = ones(2, 2, 2, 2, 2);
ub = [];

% 使用 fmincon 求解
options = optimoptions('fmincon', 'Display', 'iter');
[x_opt, fval_opt] = fmincon(fun, x0, A, b, Aeq, beq, lb, ub, [], options);

% 显示最优解和最优值
disp('最优解:');
disp(x_opt);
disp('最优值:');
disp(fval_opt);

4)运行结果

此外,即使是凸优化问题,fmin仍可能会显示求得"Local minimum found that satisfies the constraints."

5)需要注意:非常不建议fmin中使用高维矩阵(三维及三维以上)

前述案例中的目标函数太简单,不具有泛化意义。因此,我更换了一组复杂一些的目标函数和约束条件,并应用在三维矩阵上,然后发现各种报错:

分析报错原因:第一轮迭代时,"决策变量"是初始的高维矩阵( 4 ∗ 3 ∗ 4 4*3*4 4∗3∗4维矩阵);但在第二轮迭代时,目标函数中的"决策变量"、以及非线性约束中的"决策变量",就全部变为二维矩阵了!(因为第一轮迭代的结果,会以二维矩阵的形式来存储!所以,在第二轮迭代时,决策变量又变成了 4 ∗ 12 4*12 4∗12维的二维矩阵!)

因此,建议fmin中的决策变量,最高维度只设为二维矩阵!!不建议设成高维矩阵!!

相关推荐
点灯小铭5 小时前
基于MATLAB的车牌识别系统
开发语言·单片机·数码相机·matlab·毕业设计·课程设计
茜茜西西CeCe5 小时前
数字图像处理-图像的基本运算
图像处理·人工智能·计算机视觉·matlab·图像的基本运算
lingchen190620 小时前
MATLAB的数值计算(三)曲线拟合与插值
开发语言·matlab
星马梦缘1 天前
Matlab机器人工具箱使用5 轨迹规划
matlab·机器人·轨迹规划·空间插值
机器学习之心1 天前
MATLAB基于GM(灰色模型)与LSTM(长短期记忆网络)的组合预测方法
matlab·lstm
星马梦缘1 天前
Matlab机器人工具箱7 搬运动画展示
matlab·机器人·仿真·逆解
chao1898441 天前
基于MATLAB的线性判别分析(LDA)人脸识别实现
开发语言·matlab
机器学习之心2 天前
基于CNN的航空发动机剩余寿命预测 (MATLAB实现)
人工智能·matlab·cnn
战术摸鱼大师2 天前
电机控制(四)-级联PID控制器与参数整定(MATLAB&Simulink)
算法·matlab·运动控制·电机控制
星马梦缘2 天前
Matlab机器人工具箱使用2 DH建模与加载模型
人工智能·matlab·机器人·仿真·dh参数法·改进dh参数法