开源大模型应用开发

1.大语言模型初探

ChatGLM3简介

ChatGLM3-6B 是一个基于 Transformer 的预训练语言模型,由清华大学 KEG 实验室和智谱 AI 公司于 2023 年共同训练发布。该模型的基本原理是将大量无标签文本数据进行预训练,然后将其用于各种下游任务,例如文本分类、命名实体识别、情感分析等。

ChatGLM3-6B 的核心功能是语言建模,即通过预测下一个单词或字符来建立一个语言模型。该模型采用了 Transformer 结构,这是一种基于自注意力机制的深度神经网络结构,能够有效地捕捉文本中的长期依赖关系。

ChatGLM3-6B 模型具有多种预训练任务,例如文本分类、命名实体识别、情感分析等。在预训练过程中,模型会学习到各种语言知识和模式,从而能够更好地完成各种下游任务。

ChatGLM3-6B 模型的局限性在于它只能处理已经训练好的模型,无法直接用于新的、未标注的数据。此外,由于预训练模型是基于无标签数据的,因此它可能无法完全捕捉到某些特定的语言知识和模式。

总的来说,ChatGLM3-6B 是一个功能强大的语言模型,能够在各种文本相关的任务中表现出色。它的核心功能是基于 Transformer 结构的自注意力机制,能够捕捉文本中的长期依赖关系。同时,它还具有多种预训练任务,能够更好地完成各种下游任务。然而,它的局限性在于只能处理已经训练好的模型,无法直接用于新的、未标注的数据。

2.LangChain及其核心组件介绍

LangChain简介

LangChain是一个开源框架,允许从事人工智能的开发者将例如GPT-4的大语言模型与外部计算和数据来源结合起来。该框架目前以Python或JavaScript包的形式提供。

假设,你想从你自己的数据、文件中具体了解一些情况(可以是一本书、一个pdf文件、一个包含专有信息的数据库)。LangChain可以将GPT-4和这些外部数据连接起来,甚至可以让LangChain帮助你采取你想采取的行动,例如发一封邮件。

实践课程:

1、实现pdf、jpg格式文档的加载与解析

文件位置:document_loader.ipynb

2、实现一个于基ChatGLM3+LangChain的聊天应用,需要有Gradio界面

文件位置:chat.ipynb

3、基于LangChain+ChatGLM3实现本地知识库问答,需要有Gradio界面。

支持txt、md、pdf、jpg四种格式的本地文件。

文件位置:langchain_chatglm3_V3.ipynb

最终Gradio界面问答如图:

直接生成文本:
流聊天方式生成文本
4、将导入的文档向量化并存入数据库,以及基于词向量的相似文本检索

document_search.ipynb

相关推荐
学步_技术14 小时前
增强现实—Gated-attention architectures for task-oriented language grounding
人工智能·语言模型·ar
喜欢吃豆15 小时前
从像素到篇章:深入剖析光学字符识别(OCR)的技术原理
人工智能·算法·语言模型·自然语言处理·大模型·ocr
ZHOU_WUYI1 天前
介绍GSPO:一种革命性的语言模型强化学习算法
人工智能·算法·语言模型
勤劳的进取家2 天前
论文阅读:GOAT: GO to Any Thing
论文阅读·人工智能·算法·语言模型·自然语言处理
大千AI助手2 天前
COLA:大型语言模型高效微调的革命性框架
人工智能·语言模型·自然语言处理·lora·peft·cola·残差学习
王哥儿聊AI2 天前
DAEDAL:动态调整生成长度,让大语言模型推理效率提升30%的新方法
人工智能·深度学习·机器学习·语言模型·自然语言处理
强哥之神2 天前
一文读懂:用PyTorch从零搭建一个Transformer模型
pytorch·深度学习·语言模型·大模型·transformer
SHIPKING3932 天前
【机器学习&深度学习】RAG vs 微调技术取舍:大型语言模型优化的两种路径
深度学习·机器学习·语言模型
算法打盹中2 天前
基于大型语言模型的自然语言到 SQL 转换研究综述:我们身处何处,又将前往何方?
人工智能·sql·语言模型·text2sql·nl2sql
小马过河R3 天前
GPT-5原理
人工智能·gpt·深度学习·语言模型·embedding