SGLang: Efficient Execution of Structured Language Model Programs

I think there are 3 advantages in SGLang. It allows direct programing in python, it suuport RadixAttention to effeicient KVCache reuse, and it used compressed finite state machine to accelerate the structured output.

1. Runtime Programing

2. RadixAttention

Reuse the KVCache with the same prompts. The eviction policy is LRU. So Its main application scenarios are in long-context conversations and situations where prompts are shared accross requests.

3. Compressed finite state machine

The runtime analysis the adjacent singular transition edge into single edges as above graph to accelerate the decoding process.

相关推荐
我一身正气怎能输3 分钟前
游戏大厂A*寻路优化秘籍:流畅不卡顿
人工智能·游戏
johnny2331 小时前
AI工作流编排平台
人工智能
百***35482 小时前
DeepSeek在情感分析中的细粒度识别
人工智能
Qzkj6662 小时前
从规则到智能:企业数据分类分级的先进实践与自动化转型
大数据·人工智能·自动化
weixin79893765432...2 小时前
React + Fastify + DeepSeek 实现一个简单的对话式 AI 应用
人工智能·react.js·fastify
大千AI助手3 小时前
概率单位回归(Probit Regression)详解
人工智能·机器学习·数据挖掘·回归·大千ai助手·概率单位回归·probit回归
狂炫冰美式3 小时前
3天,1人,从0到付费产品:AI时代个人开发者的生存指南
前端·人工智能·后端
LCG元4 小时前
垂直Agent才是未来:详解让大模型"专业对口"的三大核心技术
人工智能
我不是QI4 小时前
周志华《机器学习—西瓜书》二
人工智能·安全·机器学习
操练起来4 小时前
【昇腾CANN训练营·第八期】Ascend C生态兼容:基于PyTorch Adapter的自定义算子注册与自动微分实现
人工智能·pytorch·acl·昇腾·cann