opencv期末练习题(2)附带解析

图像插值与缩放

python 复制代码
%matplotlib inline
import cv2
import matplotlib.pyplot as plt
def imshow(img,gray=False,bgr_mode=False):
    if gray:
        img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
        plt.imshow(img,cmap="gray")
    else:
        if not bgr_mode:
            img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
        plt.imshow(img)
    plt.show()

这段代码主要是一个用于在Jupyter Notebook中显示图像的辅助函数。让我们逐行解读:

  1. %matplotlib inline: 这是一个Jupyter Notebook的魔法命令,它告诉Jupyter在Notebook中内联显示matplotlib的图表,而不是弹出新的窗口。

  2. import cv2: 导入OpenCV库,用于图像处理。

  3. import matplotlib.pyplot as plt: 导入matplotlib.pyplot库,用于绘图和图像显示。

  4. def imshow(img, gray=False, bgr_mode=False)::定义了一个名为imshow的函数,该函数用于显示图像。它接受三个参数:

    • img: 要显示的图像。
    • gray: 一个布尔值,指示是否将图像转换为灰度(默认为False)。
    • bgr_mode: 一个布尔值,指示是否将图像从BGR模式转换为RGB模式(默认为False)。
  5. if gray:: 如果 gray 参数为 True,则执行以下语句块:

    • img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY): 使用OpenCV将图像转换为灰度。

    • plt.imshow(img, cmap="gray"): 使用matplotlib.pyplot的imshow函数显示灰度图像。

  6. else:: 如果 gray 参数为 False,则执行以下语句块:

    • if not bgr_mode:: 如果 bgr_mode 参数为 False,则执行以下语句块:

      • img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB): 使用OpenCV将图像从BGR模式转换为RGB模式。
    • plt.imshow(img): 使用matplotlib.pyplot的imshow函数显示图像。

  7. plt.show(): 显示图像。这一行代码会在Notebook中直接显示图像。

这个函数的作用是根据输入的参数显示彩色或灰度图像,确保在Jupyter Notebook中正确显示图像。

python 复制代码
logo = cv2.imread("zju.png")
imshow(logo)

读取图像并用上面定义的函数处理,得到如下所示图像

python 复制代码
logo.shape[:2]

读取图像尺寸:得到(829,843)

插值图像

resize函数

src:输入图像。

dst:输出图像,图像的数据类型与src相同。

dsize:输出图像的尺寸。

fx:水平轴的比例因子,如果将水平轴变为原来的两倍,则赋值为2。

fy:垂直轴的比例因子,如果将垂直轴变为原来的两倍,则赋值为2。

interpolation:差值方法的标志。

python 复制代码
imshow(cv2.resize(logo,dsize=(500,500)))

将图像resize为500*500的尺寸,以便后续处理,得到如下图

python 复制代码
imshow(cv2.resize(logo,dsize=(100,100)))

将图像缩小为100*100尺寸,得到如下图

图像翻转

python 复制代码
imshow(cv2.flip(logo,0)) # 上下翻转

上下翻转得到如下图

python 复制代码
imshow(cv2.flip(logo,1)) # 1 左右 翻转

左右翻转得到如下图

图像的合并

python 复制代码
img1 = cv2.flip(logo,0)
img2 = cv2.flip(logo,1)
imshow(cv2.hconcat([img1,img2]))
python 复制代码
img3 = cv2.hconcat([img1,img2])
img4 = cv2.flip(img3,1)
imshow(cv2.vconcat([img3,img4]))
相关推荐
GIOTTO情16 分钟前
媒介宣发的技术革命:Infoseek如何用AI重构企业传播全链路
大数据·人工智能·重构
阿里云大数据AI技术24 分钟前
云栖实录 | 从多模态数据到 Physical AI,PAI 助力客户快速启动 Physical AI 实践
人工智能
小关会打代码32 分钟前
计算机视觉进阶教学之颜色识别
人工智能·计算机视觉
IT小哥哥呀38 分钟前
基于深度学习的数字图像分类实验与分析
人工智能·深度学习·分类
机器之心1 小时前
VAE时代终结?谢赛宁团队「RAE」登场,表征自编码器或成DiT训练新基石
人工智能·openai
机器之心1 小时前
Sutton判定「LLM是死胡同」后,新访谈揭示AI困境
人工智能·openai
大模型真好玩1 小时前
低代码Agent开发框架使用指南(四)—Coze大模型和插件参数配置最佳实践
人工智能·agent·coze
jerryinwuhan1 小时前
基于大语言模型(LLM)的城市时间、空间与情感交织分析:面向智能城市的情感动态预测与空间优化
人工智能·语言模型·自然语言处理
落雪财神意1 小时前
股指10月想法
大数据·人工智能·金融·区块链·期股
中杯可乐多加冰1 小时前
无代码开发实践|基于业务流能力快速开发市场监管系统,实现投诉处理快速响应
人工智能·低代码