opencv期末练习题(2)附带解析

图像插值与缩放

python 复制代码
%matplotlib inline
import cv2
import matplotlib.pyplot as plt
def imshow(img,gray=False,bgr_mode=False):
    if gray:
        img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
        plt.imshow(img,cmap="gray")
    else:
        if not bgr_mode:
            img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
        plt.imshow(img)
    plt.show()

这段代码主要是一个用于在Jupyter Notebook中显示图像的辅助函数。让我们逐行解读:

  1. %matplotlib inline: 这是一个Jupyter Notebook的魔法命令,它告诉Jupyter在Notebook中内联显示matplotlib的图表,而不是弹出新的窗口。

  2. import cv2: 导入OpenCV库,用于图像处理。

  3. import matplotlib.pyplot as plt: 导入matplotlib.pyplot库,用于绘图和图像显示。

  4. def imshow(img, gray=False, bgr_mode=False)::定义了一个名为imshow的函数,该函数用于显示图像。它接受三个参数:

    • img: 要显示的图像。
    • gray: 一个布尔值,指示是否将图像转换为灰度(默认为False)。
    • bgr_mode: 一个布尔值,指示是否将图像从BGR模式转换为RGB模式(默认为False)。
  5. if gray:: 如果 gray 参数为 True,则执行以下语句块:

    • img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY): 使用OpenCV将图像转换为灰度。

    • plt.imshow(img, cmap="gray"): 使用matplotlib.pyplot的imshow函数显示灰度图像。

  6. else:: 如果 gray 参数为 False,则执行以下语句块:

    • if not bgr_mode:: 如果 bgr_mode 参数为 False,则执行以下语句块:

      • img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB): 使用OpenCV将图像从BGR模式转换为RGB模式。
    • plt.imshow(img): 使用matplotlib.pyplot的imshow函数显示图像。

  7. plt.show(): 显示图像。这一行代码会在Notebook中直接显示图像。

这个函数的作用是根据输入的参数显示彩色或灰度图像,确保在Jupyter Notebook中正确显示图像。

python 复制代码
logo = cv2.imread("zju.png")
imshow(logo)

读取图像并用上面定义的函数处理,得到如下所示图像

python 复制代码
logo.shape[:2]

读取图像尺寸:得到(829,843)

插值图像

resize函数

src:输入图像。

dst:输出图像,图像的数据类型与src相同。

dsize:输出图像的尺寸。

fx:水平轴的比例因子,如果将水平轴变为原来的两倍,则赋值为2。

fy:垂直轴的比例因子,如果将垂直轴变为原来的两倍,则赋值为2。

interpolation:差值方法的标志。

python 复制代码
imshow(cv2.resize(logo,dsize=(500,500)))

将图像resize为500*500的尺寸,以便后续处理,得到如下图

python 复制代码
imshow(cv2.resize(logo,dsize=(100,100)))

将图像缩小为100*100尺寸,得到如下图

图像翻转

python 复制代码
imshow(cv2.flip(logo,0)) # 上下翻转

上下翻转得到如下图

python 复制代码
imshow(cv2.flip(logo,1)) # 1 左右 翻转

左右翻转得到如下图

图像的合并

python 复制代码
img1 = cv2.flip(logo,0)
img2 = cv2.flip(logo,1)
imshow(cv2.hconcat([img1,img2]))
python 复制代码
img3 = cv2.hconcat([img1,img2])
img4 = cv2.flip(img3,1)
imshow(cv2.vconcat([img3,img4]))
相关推荐
DataCastle几秒前
第三届Bio-OS AI开源大赛启动会隆重举行
人工智能
后端小肥肠9 分钟前
躺赚必备!RPA+Coze+豆包:公众号自动发文,AI率0%亲测有效(附AI率0%提示词)
人工智能·aigc·coze
摘星编程20 分钟前
CloudBase AI ToolKit实战:从0到1开发一个智能医疗网站
人工智能·腾讯云·ai代码远征季#h5应用·ai医疗应用·cloudbase开发
锅挤25 分钟前
深度学习5(深层神经网络 + 参数和超参数)
人工智能·深度学习·神经网络
一支烟一朵花30 分钟前
630,百度文心大模型4.5系列开源!真香
人工智能·百度·开源·文心一言
网安INF31 分钟前
深层神经网络:原理与传播机制详解
人工智能·深度学习·神经网络·机器学习
AIbase20241 小时前
国内MCP服务平台推荐!aibase.cn上线MCP服务器集合平台
运维·服务器·人工智能
喜欢吃豆2 小时前
快速手搓一个MCP服务指南(九): FastMCP 服务器组合技术:构建模块化AI应用的终极方案
服务器·人工智能·python·深度学习·大模型·github·fastmcp
星融元asterfusion2 小时前
基于路径质量的AI负载均衡异常路径检测与恢复策略
人工智能·负载均衡·异常路径