opencv期末练习题(2)附带解析

图像插值与缩放

python 复制代码
%matplotlib inline
import cv2
import matplotlib.pyplot as plt
def imshow(img,gray=False,bgr_mode=False):
    if gray:
        img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
        plt.imshow(img,cmap="gray")
    else:
        if not bgr_mode:
            img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
        plt.imshow(img)
    plt.show()

这段代码主要是一个用于在Jupyter Notebook中显示图像的辅助函数。让我们逐行解读:

  1. %matplotlib inline: 这是一个Jupyter Notebook的魔法命令,它告诉Jupyter在Notebook中内联显示matplotlib的图表,而不是弹出新的窗口。

  2. import cv2: 导入OpenCV库,用于图像处理。

  3. import matplotlib.pyplot as plt: 导入matplotlib.pyplot库,用于绘图和图像显示。

  4. def imshow(img, gray=False, bgr_mode=False)::定义了一个名为imshow的函数,该函数用于显示图像。它接受三个参数:

    • img: 要显示的图像。
    • gray: 一个布尔值,指示是否将图像转换为灰度(默认为False)。
    • bgr_mode: 一个布尔值,指示是否将图像从BGR模式转换为RGB模式(默认为False)。
  5. if gray:: 如果 gray 参数为 True,则执行以下语句块:

    • img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY): 使用OpenCV将图像转换为灰度。

    • plt.imshow(img, cmap="gray"): 使用matplotlib.pyplot的imshow函数显示灰度图像。

  6. else:: 如果 gray 参数为 False,则执行以下语句块:

    • if not bgr_mode:: 如果 bgr_mode 参数为 False,则执行以下语句块:

      • img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB): 使用OpenCV将图像从BGR模式转换为RGB模式。
    • plt.imshow(img): 使用matplotlib.pyplot的imshow函数显示图像。

  7. plt.show(): 显示图像。这一行代码会在Notebook中直接显示图像。

这个函数的作用是根据输入的参数显示彩色或灰度图像,确保在Jupyter Notebook中正确显示图像。

python 复制代码
logo = cv2.imread("zju.png")
imshow(logo)

读取图像并用上面定义的函数处理,得到如下所示图像

python 复制代码
logo.shape[:2]

读取图像尺寸:得到(829,843)

插值图像

resize函数

src:输入图像。

dst:输出图像,图像的数据类型与src相同。

dsize:输出图像的尺寸。

fx:水平轴的比例因子,如果将水平轴变为原来的两倍,则赋值为2。

fy:垂直轴的比例因子,如果将垂直轴变为原来的两倍,则赋值为2。

interpolation:差值方法的标志。

python 复制代码
imshow(cv2.resize(logo,dsize=(500,500)))

将图像resize为500*500的尺寸,以便后续处理,得到如下图

python 复制代码
imshow(cv2.resize(logo,dsize=(100,100)))

将图像缩小为100*100尺寸,得到如下图

图像翻转

python 复制代码
imshow(cv2.flip(logo,0)) # 上下翻转

上下翻转得到如下图

python 复制代码
imshow(cv2.flip(logo,1)) # 1 左右 翻转

左右翻转得到如下图

图像的合并

python 复制代码
img1 = cv2.flip(logo,0)
img2 = cv2.flip(logo,1)
imshow(cv2.hconcat([img1,img2]))
python 复制代码
img3 = cv2.hconcat([img1,img2])
img4 = cv2.flip(img3,1)
imshow(cv2.vconcat([img3,img4]))
相关推荐
救救孩子把8 分钟前
3-机器学习与大模型开发数学教程-第0章 预备知识-0-3 函数初步(多项式、指数、对数、三角函数、反函数)
人工智能·数学·机器学习
CareyWYR8 分钟前
每周AI论文速递(250908-250912)
人工智能
张晓~183399481219 分钟前
短视频矩阵源码-视频剪辑+AI智能体开发接入技术分享
c语言·c++·人工智能·矩阵·c#·php·音视频
deephub37 分钟前
量子机器学习入门:三种数据编码方法对比与应用
人工智能·机器学习·量子计算·数据编码·量子机器学习
AI 嗯啦40 分钟前
计算机视觉----opencv实战----指纹识别的案例
人工智能·opencv·计算机视觉
max50060044 分钟前
基于多元线性回归、随机森林与神经网络的农作物元素含量预测及SHAP贡献量分析
人工智能·python·深度学习·神经网络·随机森林·线性回归·transformer
trsoliu1 小时前
前端基于 TypeScript 使用 Mastra 来开发一个 AI 应用 / AI 代理(Agent)
前端·人工智能
白掰虾1 小时前
STM32N6&AI资料汇总
人工智能·stm32·嵌入式硬件·stm32n6·stm32ai
爱思德学术2 小时前
中国计算机学会(CCF)推荐学术会议-C(软件工程/系统软件/程序设计语言):MSR 2026
人工智能·机器学习·软件工程·数据科学
小李独爱秋2 小时前
特征值优化:机器学习中的数学基石
人工智能·python·线性代数·机器学习·数学建模