QT上位机开发(简易图像处理软件)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing @163.com】

大家都知道图像处理非常地重要,因为它不仅仅是可以用于拍照美颜,而且在工业、医疗和军事等方面也发挥着巨大的作用。另外一点大家有所不知的是,在工业上,图像处理排名靠前的几家公司,长期都是高毛利、高利润的代名词。这一次QT开发,我们正好可以借助于opencv开源库,做一个简单的图像处理软件。

1、创建一个简单的qt widget工程

我们需要这个工程,仅仅是引用它的一个框架。唯一需要注意的是,创建工程的时候,一定要选择64位。

2、安装opencv库

之前一直认为windows上面opencv库都需要自己编译的,但是没想到在opencv官方网站,都是已经编译好的头文件和静态库和动态库。有了这几点,使用起来就非常方便了。这个安装包,就是编译好的压缩库,里面有头文件、lib文件和dll文件而已。

复制代码
https://opencv.org/releases/

3、设置include目录

安装了opencv之后,那么刚才创建的工程,就一定需要把opencv include目录包进来。注意选择的时候,一定是x64下面的目录,而不是x86下面的目录,这一点很容易混肴的。

4、设置静态库的链接

除了头文件的编译之外,opencv静态库链接也是非常需要的。不然的话,代码即使编译通过了,最后也会链接不过的。所以,还要在x64环境下选择静态库的链接地址,

5、修改main.cpp代码

main.cpp代码其实比较简单。首先注释掉原来所有代码,接着就是创建一个Mat的image,在二值化之后通过QImage转成QPixmap,最后把QPixmap贴到一个label标签上。有了前面的头文件和lib文件,这边编译应该没有什么问题了。

复制代码
#include <QtWidgets/QApplication>
#include <opencv2/opencv.hpp>
#include <QImage>
#include <QPixmap>
#include <QLabel>

int main(int argc, char *argv[])
{
	QApplication a(argc, argv);

	// 读取图像
	cv::Mat originalImage = cv::imread("lena.png");

	// 将图像灰度化
	cv::Mat grayImage;
	cv::cvtColor(originalImage, grayImage, cv::COLOR_BGR2GRAY);

	// 将灰度图像进行二值化处理
	cv::Mat binaryImage;
	cv::threshold(grayImage, binaryImage, 128, 255, cv::THRESH_BINARY);

	// 将OpenCV二值化图像转换为Qt图像
	QImage qImage(binaryImage.data, binaryImage.cols, binaryImage.rows, binaryImage.step, QImage::Format_Grayscale8);
	QPixmap pixmap = QPixmap::fromImage(qImage);

	// 在Qt界面中显示二值化图像
	QLabel label;
	label.setPixmap(pixmap);
	label.show();

	return a.exec();
}

6、拷贝opencv的dll文件到可执行文件目录

生成的exe既依赖于qt,也依赖于opencv。那么依赖于opencv的这部分呢,可以直接把对应的dll文件copy到生成的exe目录下,qt这部分可以通过直接vs2017 debug调试启动的方式来解决。

7、寻找vcruntime140_1d.dll

实际运行的时候,系统还会提示我们,当前没有vcruntime140_1d.dll这个文件。关于这个文件,应该是opencv编译的时候涉及到的,可以通过下面这个网站进行查找,拷贝到exe目录下即可,

复制代码
https://cn.dll-files.com/vcruntime140_1d.dll.html

8、下载测试图片lena.png

所有程序都准备好了,那么下面需要的就是测试图片。这部分呢,我们可以去寻找最经典的测试图片lena.png,比如可以从如下这个地址进行考虑。当然,图片记得一定放在h文件、cpp文件同级目录下。

复制代码
https://github.com/mikolalysenko/lena/blob/master/lena.png

9、开始测试

程序、动态库、图片都准备好之后,就可以测试了。这个时候,我们在vs2017下面启动调试程序,不出意外的话,就可以看到一张灰化的二值化图片。

相关推荐
一个处女座的程序猿2 小时前
AI之Agent之VibeCoding:《Vibe Coding Kills Open Source》翻译与解读
人工智能·开源·vibecoding·氛围编程
Jay Kay3 小时前
GVPO:Group Variance Policy Optimization
人工智能·算法·机器学习
风指引着方向3 小时前
归约操作优化:ops-math 的 Sum/Mean/Max 实现
人工智能·wpf
机器之心3 小时前
英伟达世界模型再进化,一个模型驱动所有机器人!机器人的GPT时刻真正到来
人工智能·openai
纯爱掌门人3 小时前
终焉轮回里,藏着 AI 与人类的答案
前端·人工智能·aigc
人工智能AI技术3 小时前
Transformer:大模型的“万能骨架”
人工智能
uesowys4 小时前
Apache Spark算法开发指导-Factorization machines classifier
人工智能·算法
人工智能AI技术4 小时前
预训练+微调:大模型的“九年义务教育+专项补课”
人工智能
aircrushin4 小时前
中国多模态大模型历史性突破:智源Emu3自回归统一范式技术深度解读
人工智能
Lsx_4 小时前
前端视角下认识 AI Agent 和 LangChain
前端·人工智能·agent